To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

J-homomorphism

From Wikipedia, the free encyclopedia

In mathematics, the J-homomorphism is a mapping from the homotopy groups of the special orthogonal groups to the homotopy groups of spheres. It was defined by George W. Whitehead (1942), extending a construction of Heinz Hopf (1935).

YouTube Encyclopedic

  • 1/3
    Views:
    336 432
    464
    1 507
  • Graph Theory - An Introduction!
  • Inverse Image of a Normal Subgroup Proof
  • Graph Theory Channel info

Transcription

Definition

Whitehead's original homomorphism is defined geometrically, and gives a homomorphism

of abelian groups for integers q, and . (Hopf defined this for the special case .)

The J-homomorphism can be defined as follows. An element of the special orthogonal group SO(q) can be regarded as a map

and the homotopy group ) consists of homotopy classes of maps from the r-sphere to SO(q). Thus an element of can be represented by a map

Applying the Hopf construction to this gives a map

in , which Whitehead defined as the image of the element of under the J-homomorphism.

Taking a limit as q tends to infinity gives the stable J-homomorphism in stable homotopy theory:

where is the infinite special orthogonal group, and the right-hand side is the r-th stable stem of the stable homotopy groups of spheres.

Image of the J-homomorphism

The image of the J-homomorphism was described by Frank Adams (1966), assuming the Adams conjecture of Adams (1963) which was proved by Daniel Quillen (1971), as follows. The group is given by Bott periodicity. It is always cyclic; and if r is positive, it is of order 2 if r is 0 or 1 modulo 8, infinite if r is 3 or 7 modulo 8, and order 1 otherwise (Switzer 1975, p. 488). In particular the image of the stable J-homomorphism is cyclic. The stable homotopy groups are the direct sum of the (cyclic) image of the J-homomorphism, and the kernel of the Adams e-invariant (Adams 1966), a homomorphism from the stable homotopy groups to . If r is 0 or 1 mod 8 and positive, the order of the image is 2 (so in this case the J-homomorphism is injective). If r is 3 or 7 mod 8, the image is a cyclic group of order equal to the denominator of , where is a Bernoulli number. In the remaining cases where r is 2, 4, 5, or 6 mod 8 the image is trivial because is trivial.

r 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 2 1 1 1 1 2 2 1 1 1 1 2 2
1 2 1 24 1 1 1 240 2 2 1 504 1 1 1 480 2 2
2 2 24 1 1 2 240 22 23 6 504 1 3 22 480×2 22 24
16 130 142 130

Applications

Michael Atiyah (1961) introduced the group J(X) of a space X, which for X a sphere is the image of the J-homomorphism in a suitable dimension.

The cokernel of the J-homomorphism appears in the group Θn of h-cobordism classes of oriented homotopy n-spheres (Kosinski (1992)).

References

This page was last edited on 22 August 2023, at 21:06
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.