To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Aczel's anti-foundation axiom

From Wikipedia, the free encyclopedia

In the foundations of mathematics, Aczel's anti-foundation axiom is an axiom set forth by Peter Aczel (1988), as an alternative to the axiom of foundation in Zermelo–Fraenkel set theory. It states that every accessible pointed directed graph corresponds to exactly one set. In particular, according to this axiom, the graph consisting of a single vertex with a loop corresponds to a set that contains only itself as element, i.e. a Quine atom. A set theory obeying this axiom is necessarily a non-well-founded set theory.

YouTube Encyclopedic

  • 1/3
    Views:
    8 432
    3 264
    1 893
  • Gregg-Zuckerman-021110-1
  • Gregg-Zuckerman-021110-2
  • Gregg-Zuckerman-021110-3

Transcription

Accessible pointed graphs

An accessible pointed graph is a directed graph with a distinguished vertex (the "root") such that for any node in the graph there is at least one path in the directed graph from the root to that node.

The anti-foundation axiom postulates that each such directed graph corresponds to the membership structure of exactly one set. For example, the directed graph with only one node and an edge from that node to itself corresponds to a set of the form x = {x}.

See also

References

  • Aczel, Peter (1988). Non-well-founded sets. CSLI Lecture Notes. Vol. 14. Stanford, CA: Stanford University, Center for the Study of Language and Information. ISBN 978-0-937073-22-3. MR 0940014. Retrieved 2008-03-12.
  • Goertzel, Ben (1994). "Self-Generating Systems". Chaotic Logic: Language, Thought and Reality From the Perspective of Complex Systems Science. Plenum Press. ISBN 978-0-306-44690-0. Retrieved 2007-01-15.
  • Akman, Varol; Pakkan, Mujdat (1996). "Nonstandard set theories and information management" (PDF). Journal of Intelligent Information Systems. 6 (1): 5–31. CiteSeerX 10.1.1.49.6800. doi:10.1007/BF00712384.
This page was last edited on 6 March 2024, at 07:17
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.