To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Acellular dermis

From Wikipedia, the free encyclopedia

Acellular dermis is a type of biomaterial derived from processing human or animal tissues to remove cells and retain portions of the extracellular matrix (ECM). These materials are typically cell-free, distinguishing them from classical allografts and xenografts, can be integrated or incorporated into the body, and have been FDA approved for human use for more than 10 years in a wide range of clinical indications.[1]

YouTube Encyclopedic

  • 1/3
    Views:
    3 437 968
    5 338
    402 169
  • The Integumentary System, Part 1 - Skin Deep: Crash Course A&P #6
  • Rotator Cuff Tear Repair with ArthroFLEX® BioWasher® Acellular Dermal Matrix
  • Extracellular matrix | Structure of a cell | Biology | Khan Academy

Transcription

When you hear about your “organs,” you probably think of your heart, or your liver, or your lungs. Maybe you picture Captain Nemo playing the organ aboard the Nautilus. Why do they have an organ on a submarine? That is - that doesn’t make any sense. But your first associations with that term probably overlook your biggest organ. I’m talking about your skin. The glorious fleshy shroud that keeps the world out, and you in. Your skin protects your body against infection and extreme temperatures, maintains your balance of fluids, and even synthesizes vitamin D for your own personal use. Its many nerve endings allow you to sense the outside world, and its sweat glands and blood vessels help you maintain a proper temperature and communicate a whole range of stuff -- from your health to your emotions -- through things like blushing, and flushing, and sweating. It also accounts for about 3 to 5 kilograms of your body weight, and if you could spread it out, it would measure up to two square meters, enough to cover your bed -- the most disgusting, paper-towel-thin, waterproof, insulating, stretchy, self-repairing, lifetime-lasting quilt on the planet! It comes in lots of different colors, you can cover it up, or show it off, or tattoo the periodic table on it if you want. And of course, without it, you would basically shrivel up and die in no time. Together with your hair, nails, and sweat and oil glands, your skin forms your integumentary system. And if you’ve ever been burned, or had surgery, or stepped on a nail, you know how fast complications arise when it gets damaged. But it also heals up quite quickly. LAYERS. Like an everlasting gobstopper, the key to your integumentary system is layers. And although you can’t tell by looking at it, your skin actually has three of them, each with particular types of cells that have their own skin jobs, to borrow a phrase from Blade Runner or BSG… whichever you like! The epidermis is the only layer you can actually see, assuming that your skin is intact, which is why it’s what you think of, when you think of “skin.” It’s made of stratified squamous epithelial tissue. But the dermis just below it is where most of the work that skin does gets done, like sweating, and circulating blood, and feeling everything everywhere all the time. And at the bottom there’s the subcutis, or hypodermis, composed mostly of adipose or fatty tissue. Each of these layers owes its properties -- and its ability to do its “skin job” -- to its unique combination of cells. The bulk of your epidermis, for example, is made up of cells called keratinocytes, which are the building blocks of that tough, fibrous protein keratin that gives structure, durability, and waterproofing to your hair, nails, and outer skin. These cells are constantly dying and being replaced -- you lose millions of them every day, enough to completely replace your epidermis every 4 to 6 weeks. That’s why if you want to tell the world you love your mom or commemorate your favorite famous physiologist with a tattoo you gotta make sure the ink gets below the epidermis. If there’s a cell in the human body that’s been responsible for causing the most pride and the most prejudice in human history, it’s another epidermal cell: the melanocyte, the spider-shaped cell that synthesizes melanin, the pigment that gives skin its color. I’ll spend more time later talking about why skin color differs around the world, but one thing to keep in mind is that both the very palest and the very darkest human skins on the planet have about the same number of melanocytes. Your particular color isn’t about the number of these cells that you have, but instead about the breadth of their spidery cellular extensions, which in turn affect the amount of melanin that they contain. But on a cellular level, we’re all the same. Now, your skin, obviously, is also your first line of defense when it comes to protecting you from the outside world. So it may not come as a surprise that you have lots of immune system cells in your epidermis as well. These are your dendritic, or Langerhans cells, which are kinda star-shaped, and like white blood cells and platelets, they actually originate in your bone marrow. Once they migrate to the epidermis, their long, skinny tendrils run around the keratinocytes and spend much of their time ingesting the unwanted invaders that are trying to sneak around your skin. Finally, rounding out the quartet of epidermal cells, your tactile, or Merkel cells occur deep down at the boundary between the epidermis and the dermis, where they combine with nerve endings to create a sensory receptor for touch. What’s a little weird, though, is that all these cells are all organized differently in the skin that covers your body. In fact, in some places, you have more layers of epidermis than others. Your thick skin -- and yes, that’s what it’s really called -- is the tougher stuff on the palms of your hands and the soles your feet, and it consists of five epidermal layers. Your thin skin covers everything else, with just four. To get to know what’s going on with your thick skin, let’s just imagine you’re walking around barefoot in the yard, when suddenly you feel a shooting pain. You’ve just stepped on a big ol’ nail, and it’s penetrated all of the layers of your epidermis. First it pierced your stratum corneum, which means -- pardon my Latin -- “horny layer.” This is the outermost layer and also the roughest, made up of about 20 or 30 sheets of dead keratinocyte cells. This is the layer that you’re always sloughing off and feeding to dust mites, but while it’s in place it offers basic protection from environmental threats. From there, the nail drives through your stratum lucidum, or “clear layer.” This holds two or three rows of clear, flat, dead keratinocytes that are only found in the thick skin of your palms and foot soles. So, in places where you only have thin skin, this layer is what’s missing. Things start to get more serious in the “granular layer” or stratum granulosum, because this contains living keratinocytes that are forming keratin like crazy. This layer looks kind of grainy because those cells are getting compressed and flattened as they move up through the epidermal layers, maturing as they go. The deeper you go through the layers of the epidermis, the younger the cells get. Regeneration happens in the lower layers, and new cells move up toward the surface, maturing along the way, where they eventually die and slough off from the surface of your skin. This whole process is due in part to the fact that the epidermis is epithelial, so it’s avascular. That means that all the oxygen and nutrients that its cells need have to come from the dermis below it. So, as epidermal cells mature and get bumped up by younger cells forming below them, they move further and further from the blood supply, and end up essentially suffocating. When that nail cuts through the fourth layer -- the stratum spinosum, or “spiny layer” -- it’s getting closer to the point where cell regeneration, or mitosis, is active. These cells look prickly when they’re dehydrated for microscope slide preparation -- hence the name -- and that’s because they contain filaments that help them hold to each other. And finally, that dang nail touches down on your deepest, thinnest epidermal level -- the “basal layer” or stratum basale. It’s just a single layer of columnar cells, but it’s like a cell factory where most of that new-cell production happens. This stratum is also what connects the epidermis to the layer of skin below it, the dermis. Feelin’ a little overwhelmed by all the layers? Just remember: “Come Let’s Get Sun Burned” -- it’s a pneumonic. I mean, though, who came up with that, because if you own some skin you know you don’t want to get sunburned! The ultraviolet radiation in the sun can damage the epidermis, causing elastic fibers to clump up, leading to that tell-tale leather-face condition. Plus, getting sunburned temporarily depresses your immune system -- because, remember, you have immune cells in your epidermis too -- AND the radiation can actually alter your skin cells’ DNA, leading to skin cancer. We’re gonna go into your skin’s love-hate relationship with sunlight more next week, but in the meantime, seriously, wear your sunscreen. Now, skin damage of any kind can get serious when it affects the dermis, because it’s not only got loads of those collagen and elastin fibers, which help make your skin strong and elastic, it’s also full of capillaries and blood vessels. And it houses the nerve fibers that register sensations like temperature, pressure, and pain, as well as parts of your hair follicles and oil and sweat glands with the ducts that lead up to the surface of the skin. So, the dermis is where most of the skin’s work is done, and it does it in just three layers. The upper, papillary layer is composed of a thin sheet of areolar connective tissue that’s riddled with little peg-like projections called dermal papillae. These papillae are pretty neat because in the thick skin of your hands and feet, these tiny protrusions form unique friction ridges that press up through the epidermis to help our fingers and feet grip surfaces. Your fingerprints! Just below that papillary layer is the deeper, thicker reticular layer that makes up 80 percent of your dermis, made up of dense irregular connective tissue. All of the dynamic parts contained within the dermis -- like the nerve fibers and capillaries -- are distributed between both its layers. So any time you get cut enough to bleed or feel pain, you know that you’ve broken through the epidermis and lacerated the dermis. Which, by the way, is the layer that tattoo needles have to reach in order to work: It’s the only way to make tattoos permanent, but also it means getting tattoos hurts. And bleeds. Finally, something of a footnote to your skin is its third and most basal layer -- the subcutis, or hypodermis. It consists of mostly adipose connective tissue -- basically a seam of fat -- and it provides insulation, energy storage, shock absorption, and helps anchor the skin. In short, your hypodermis is where most of your body fat hangs out. But there are more skin things to discuss, so in our next lesson we will tackle big questions, like -- does lotion really do anything? How does deodorant work? And what will make my hair soft and shiny and irresistible? For now, though, you learned all about skin, the main organ of your integumentary system. We looked at the structure, mechanism, and function of your three layers of skin -- the epidermis, dermis, and hypodermis -- and their various sub-layers. We talked about the roles of melanin and keratin cells, what happens when you step on a nail, how to ensure you get a good tattoo, and why it pays to wear sunscreen. Thank you for watching, especially to all of our Subbable subscribers, who make Crash Course possible for themselves and for the world. To find out how you can become a supporter, just go to subbable.com. This episode was written by Kathleen Yale, edited by Blake de Pastino, and our consultant, is Dr. Brandon Jackson. Our director and editor is Nicholas Jenkins, the script supervisor and sound designer is Michael Aranda, and the graphics team is Thought Café.

Harvesting and processing

All ECM samples originate from mammalian tissues, such as dermis, pericardium, and small intestinal submucosa (SIS). After explantation from the source, the ECM biomaterial retains some characteristics of the original tissue. The ECM tissues can be harvested from varying stages in the developmental stages in mammalian species such as human, porcine, equine, and bovine. Although they are similarly composed of fibril collagen, the microstructure, specific composition (including presence of non-collagenous protein and glycosaminoglycans and ratio of different types of collagen), physical dimensions and mechanical properties can differ. Depending on the developmental stage of the tissue during which harvesting occurred, the microstructure can vary within an organism. Additionally, keeping in mind the size and shape of the final tissue, the potential of the physical dimensions of the tissue of origin must be considered.[1]

Despite this “memory” of the ECM tissue, methods have been engineered so that these innate characteristics can be modified, saved or removed.[1] The modification process varies depending on the material used in clinical setting. Some ECM biomaterials undergo a modification that removes all the cells but leaves the remainder of the other ECM components called decellularization. Another process that can be introduced into the biomaterial is artificial crosslinking. Artificial crosslinking has been shown to stabilize reconstituted collagen, which can rapidly degenerate in vivo.[1] Although mechanical strength is gained, the artificial crosslinks that are added increase the chance for a host-cell rejection, due to its foreign origin.[2] Due to this complication, intentional crosslinking is no longer practiced as more recent advancements have been made that increase the lifespan of the collagen without the use of artificial stabilization. Finally, to ensure the ECM biomaterial is without infectious bacteria and viruses, most are terminally sterilized. This can include ethylene oxide (EO) gas, gamma irradiation, or electron beam (e-beam) irradiation as the sterilizing agent.[1]

Decellularized ECM biomaterials can be further processed into a fine powder and then lyophilized (freeze-dried). This powder can then be mixed with collagenase to form an ECM derived hydrogel (self-healing hydrogels). These hydrogels are then used in cell culture to help maintain cell phenotype and increase cell proliferation. Cells cultured on ECM hydrogels maintain their phenotype better than cells cultured on other substrates such as matrigel or type 1 collagen.[3][4] Though hydrogels do not yet have direct clinical relevance, they have shown promise as a method of assisting in organ regeneration.[3][4][5]

Similarly, whole organs can be decellularized to create 3-D ECM scaffolds. These scaffolds can then be re-cellularized in an attempt to regenerate whole organs for transplant. This method works primarily for organs with a complex vasculature, as it allows detergent to be fully perfused through the material.[6]

Host/implant interactions

Wound healing of the skin and tendons is a complex coordinated process in the body that happens slowly over weeks or even years. A number of products in the market today aim to affect this process positively, although little data is available on their success. The majority of products are still in the development phases where the (often inflammatory) interactions between the host and the implanted devices are being assessed.

Implanted ECM biomaterials fall into two general categories based on how they interact with the host. Incorporating devices eventually allow the growth of cells and passage of blood vessels through the matrix, whereas nonincorporating biomaterials are encapsulated by a wall of fused macrophages. In nonincorporating biomaterials such as Permacol, an acellular porcine dermal implant for hernia repair, it is important that the material is not degraded or infiltrated by the immune system.[1][7] Encapsulated biomaterials that are recognized as foreign can be degraded and/or rejected by the body and migrate to the outside of the body. In incorporated ECM biomaterials, infiltration by the immune system can occur in as few as seven days, leading to rapid degradation of the device volume. In the case of Graftjacket, an allograft from human dermis, the matrix is quickly populated by host cells as vasculature. The device itself decreased more than 60% in volume, and is replaced with host fibroblasts and macrophages.[1][8]

Applications

ECM biomaterials are used to promote healing in a number of tissues, especially the skin and tendons. Surgimend, a collagen matrix derived from fetal bovine dermis, can trigger the healing of tendons (which do not heal spontaneously) in the ankle. This intervention can shorten healing time by almost half and allows the patient to return to full activity much sooner.[9] Open wounds, like tendons, do not spontaneously heal and can persist for long stretches of time. When ECM biomaterials are added in multiple layers to the ulcer, the wound begins to close quickly and generates host tissue. Although preliminary studies seem promising, little information is available on the success of and direct comparisons between different ECM biomaterial devices in human trials.[1]

Alloderm, an acellular dermis derived from the skin of donated cadavers,[10][11] is used in reconstructive and dental surgeries. In gingival grafts, the acellular dermis is an alternative to tissue cut from the palate of the patient's mouth.[12] It has also been used for abdominal hernia repair,[13] and to rebuild resected turbinates in the treatment of empty nose syndrome.[14] Alloderm and other acellular dermal matrices are used routinely in implant based breast reconstruction after mastectomy for improved soft tissue coverage and thus decrease the risk of visible rippling, capsular contraction, implant malposition, bottoming out and implant exposure.[15]

The FDA has not approved any acellular dermal matrix products for use in implant-based breast reconstruction following surgery to remove a breast tumour, as the published literature suggests that some products may have high risk profiles.[16]

Examples

References

  1. ^ a b c d e f g h Cornwell, K.G., Landsman, A., James, K.S. Extracellular Matrix Biomaterials for Soft Tissue Repair. Clin Podiatr Med Surg 26 (2009) 507–523 (Original Article)
  2. ^ "Badylak S. "Host Response to Biomaterials"". Archived from the original on 2019-03-19. Retrieved 2015-04-19.
  3. ^ a b Wolf MT, et al. "A hydrogel derived from decellularized dermal extracellular matrix"[1]
  4. ^ a b Sawkins MJ, et al. "Hydrogels derived from demineralized and decellularized bone extracellular matrix"[2]
  5. ^ Barker TH "The role of ECM proteins and protein fragments in guiding cell behavior in regenerative medicine"[3]
  6. ^ Faulk, Denver M.; Johnson, Scott A.; Zhang, Li; Badylak, Stephen F. (August 2014). "Role of the extracellular matrix in whole organ engineering". Journal of Cellular Physiology. 229 (8). Wiley-Liss: 984–989. doi:10.1002/jcp.24532. ISSN 0021-9541. PMID 24347365. Archived from the original on 2022-08-02. Retrieved 2024-03-29.
  7. ^ Faulk DM, et al. "ECM hydrogel coating mitigates the chronic inflammatory response to polypropylene mesh."[4]
  8. ^ [Graft Jacket [5] Archived 2016-03-09 at the Wayback Machine
  9. ^ Tei Biosciences
  10. ^ Naomi Freundlich for the New York Times. March 16, 2003 All of Me
  11. ^ Kerry Howley for the LA Times. March 6, 2007 Big business in body parts
  12. ^ Hirsch A, Goldstein M, Goultschin J, Boyan BD, Schwartz Z (2005). "A 2-year follow-up of root coverage using sub-pedicle acellular dermal matrix allografts and subepithelial connective tissue autografts". Journal of Periodontology. 76 (8): 1323–8. doi:10.1902/jop.2005.76.8.1323. PMID 16101365.
  13. ^ Misra, S.; Raj, P. K.; Tarr, S. M.; Treat, R. C. (2008-06-01). "Results of AlloDerm use in abdominal hernia repair". Hernia. 12 (3): 247–250. doi:10.1007/s10029-007-0319-z. ISSN 1265-4906. PMID 18209948. S2CID 9919259.
  14. ^ Leong, SC (Jul 2015). "The clinical efficacy of surgical interventions for empty nose syndrome: A systematic review". Laryngoscope. 125 (7): 1557–62. doi:10.1002/lary.25170. PMID 25647010. S2CID 206202553.
  15. ^ Hinchcliff KM, Orbay H, Busse BK, Charvet H, Kaur M, Sahar DE. Comparison of two cadaveric acellular dermal matrices for immediate breast reconstruction: A prospective randomized trial. J Plast Reconstr Aesthet Surg. 2017 May;70(5):568-576. doi: 10.1016/j.bjps.2017.02.024. Epub 2017 Mar 6. PMID 28341592.
  16. ^ "Acellular Dermal Matrix (ADM) Products Used in Implant-Based Breast Reconstruction Differ in Complication Rates: FDA Safety Communication". FDA. Retrieved 3 January 2023.
  17. ^ Alloderm, manufactured by Lifecell
  18. ^ SurgiMend and PriMatrix, manufactured by TEI Biosciences Inc.  Archived 2016-07-10 at the Wayback Machine
  19. ^ FDA 510k, Permacol 
  20. ^ Grafton, manufactured by Osteotech Inc. FDA 510K, Grafton
  21. ^ FDA 510k, Orthadapt 
  22. ^ FDA 510k, Supple Peri-Guard 
  23. ^ Jayakumar, R; Chennazhi, KP; Srinivasan, S; Nair, SV; Furuike, T; Tamura, H (2011). "Chitin scaffolds in tissue engineering". Int J Mol Sci. 12 (3): 1876–87. doi:10.3390/ijms12031876. PMC 3111639. PMID 21673928.
  24. ^ Tissue Engineering: From Cell Biology to Artificial Organs, p163
  25. ^ Ranganathan, Kavitha; Santosa, Katherine B.; Lyons, Daniel A.; Mand, Simanjit; Xin, Minqiang; Kidwell, Kelley; Brown, David L.; Wilkins, Edwin G.; Momoh, Adeyiza O. (2015-10-01). "Use of Acellular Dermal Matrix in Postmastectomy Breast Reconstruction: Are All Acellular Dermal Matrices Created Equal?". Plastic and Reconstructive Surgery. 136 (4): 647–653. doi:10.1097/PRS.0000000000001569. ISSN 1529-4242. PMID 26397242. S2CID 4769316.
This page was last edited on 29 March 2024, at 19:49
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.