To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

# Absorption cross section

## From Wikipedia, the free encyclopedia

Cross-sections values for all elements with atomic number Z smaller than 100 collected for photons with energies from 1 keV to 20 MeV. The discontinuities in the values are due to absorption edges which were also shown.

Absorption cross section is a measure for the probability of an absorption process. More generally, the term cross section is used in physics to quantify the probability of a certain particle-particle interaction, e.g., scattering, electromagnetic absorption, etc. (Note that light in this context is described as consisting of particles, i.e., photons.) In honor of the fundamental contribution of Maria Goeppert Mayer to this area, the unit for the two-photon absorption cross section is named the "GM". One GM is 10−50 cm4 s photon−1.[1]

In the context of ozone shielding of ultraviolet light, absorption cross section is the ability of a molecule to absorb a photon of a particular wavelength and polarization. Analogously, in the context of nuclear engineering it refers to the probability of a particle (usually a neutron) being absorbed by a nucleus. Although the units are given as an area, it does not refer to an actual size area, at least partially because the density or state of the target molecule will affect the probability of absorption. Quantitatively, the number ${\displaystyle dN}$ of photons absorbed, between the points ${\displaystyle x}$ and ${\displaystyle x+dx}$ along the path of a beam is the product of the number ${\displaystyle N}$ of photons penetrating to depth ${\displaystyle x}$ times the number ${\displaystyle n}$ of absorbing molecules per unit volume times the absorption cross section ${\displaystyle \sigma }$:

${\displaystyle {\frac {dN}{dx}}=-Nn\sigma }$.

The absorption cross-section is closely related to molar absorptivity and mass absorption coefficient. For a given particle and its energy, the absorption cross-section of the target material can be calculated from mass absorption coefficient using:

${\displaystyle \sigma =(\mu /\rho )m_{a}/N_{A}}$

where:

• ${\displaystyle \mu /\rho }$ is the mass absorption coefficient
• ${\displaystyle m_{a}}$ is the atomic molar mass in g/mol
• ${\displaystyle N_{A}}$ is Avogadro's number and is the number of molecules per mole

This is also commonly expressed as:

${\displaystyle \sigma =\alpha /n}$

where:

• ${\displaystyle \alpha }$ is the absorption coefficient
• ${\displaystyle n}$ is the atomic number density

### YouTube Encyclopedic

• 1/3
Views:
9 969
15 301
3 316
• Nuclear Cross Section
• 19: Scattering cross section
• The collision cross-section explained

## References

1. ^ "Two-Photon Absorption Measurements: Establishing Reference Standards". Australian National University. June 8, 2007. Archived from the original on September 14, 2013. Retrieved September 14, 2013.
This page was last edited on 29 August 2021, at 09:30
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.