To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Height above ground level

From Wikipedia, the free encyclopedia

In aviation, atmospheric sciences and broadcasting, a height above ground level (AGL[1] or HAGL) is a height measured with respect to the underlying ground surface. This is as opposed to height above mean sea level (AMSL or HAMSL), height above ellipsoid (HAE, as reported by a GPS receiver), or height above average terrain (AAT or HAAT, in broadcast engineering). In other words, these expressions (AGL, AMSL, HAE, AAT) indicate where the "zero level" or "reference altitude" – the vertical datum – is located.

Abbreviation Stands for Main usage Zero level Measuring devices
AGL, HAGL height above ground level aviation, atmospheric science, broadcasting ground surface radar altimeter
AMSL, HAMSL height above mean sea level nautic, technics, geography sea level average barometric altimeter
HAE height above ellipsoid navigation, science math surface model WGS84 GPS receiver
AAT, HAAT height above average terrain broadcasting, cellular networks average surrounding surface

YouTube Encyclopedic

  • 1/3
    Views:
    531 836
    153 427
    807 169
  • Projectile Motion - A Level Physics
  • Physics Kinematics In One Dimension Distance, Acceleration and Velocity Practice Problems
  • How To Solve Any Projectile Motion Problem (The Toolbox Method)

Transcription

Aviation

A pilot flying an aircraft under instrument flight rules (typically under poor visibility conditions) must rely on the aircraft's altimeter to decide when to deploy the undercarriage and prepare for landing. Therefore, the pilot needs reliable information on the height of the plane with respect to the landing area (usually an airport). The altimeter, which is usually a barometer calibrated in units of distance instead of atmospheric pressure, can therefore be set in such a way as to indicate the height of the aircraft above ground. This is done by communicating with the control tower of the airport (to get the current surface pressure) and setting the altimeter so as to read zero on the ground of that airport. Confusion between AGL and AMSL, or improper calibration of the altimeter, may result in controlled flight into terrain, a crash of a fully functioning aircraft under pilot control.

While the use of a barometric altimeter setting that provides a zero reading on the ground of the airport is a reference available to pilots, in commercial aviation it is a country-specific procedure that is not often used (it is used, e.g., in Russia, and a few other countries[which?]). Most countries (Far East, North and South America, all of Europe, Africa, Australia) use the airport's AMSL (above mean sea level) elevation as a reference. During approaches to landing, there are several other references that are used, including AFE (above field elevation) which is height referencing the highest point on the airfield, TDZE (touchdown zone elevation) or TH (threshold height) which both refer to the elevation of the landing end of the runway measured AMSL and AGL respectively.

In general, "altitude" refers to distance above mean sea level (MSL or AMSL), "height" refers to distance above a particular point (e.g. the airport, runway threshold, or ground at present location), and "elevation" describes a feature of the terrain itself in terms of distance above MSL.[2][3]

Atmospheric sciences

In weather and climate studies, measurements or simulations often need to refer to a specific height or altitude, which is naturally AGL. However, the values of geophysical variables measured in various places on the natural (ground) surface may not be easily compared in hilly or mountainous terrain, because part of the observed variability is due to changes in the altitude of the surface. For this reason, variables such as pressure or temperature are sometimes 'reduced' to mean sea level.

In general circulation models and global climate models, the state and properties of the atmosphere are specified or computed at a number of discrete locations and heights. When the topography of the continents is explicitly represented, the altitudes of these locations are set above the simulated ground level. This is often implemented using the so-called sigma coordinate system, which is the ratio of the pressure at a location (latitude, longitude, altitude) divided by the pressure at the nadir of that location on ground surface (same latitude, same longitude, altitude AGL = 0).

Broadcasting

In broadcasting, altitude AGL has relatively little direct bearing on the broadcast range of a station. Rather, it is HAAT (the height above the average terrain (in the surrounding area)) which is used to determine how far a broadcast station (or any other sort of VHF or higher radio-frequency) transmission will travel.

From aviation safety perspective though, the more important aspect is the height of the radio tower used to support the radio antenna. In this case, height AGL is the only important measurement for aviation authorities, which require that some tall towers have proper aircraft warning paint and lights to avoid collisions.

See also

References

  1. ^ Radiotelephony Manual. UK Civil Aviation Authority. 28 May 2015. ISBN 9780-11792-893-0. CAP413.
  2. ^ Procedures for Air Navigation Services – Aircraft Operations (PANS-OPS), Volume II: Construction of Visual and Instrument Flight Procedures (PDF) (5th ed.). ICAO. 2006. Archived from the original (PDF) on 2016-05-19. Retrieved 2015-08-15.
  3. ^ Pratt, Jeremy M. (2003) [1996]. The Private Pilot's Licence Course: Navigation, Meteorology (3rd ed.). met22–met23. ISBN 1-874783-18-7.

External links

This page was last edited on 27 November 2023, at 03:46
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.