To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

In mathematics, an AW*-algebra is an algebraic generalization of a W*-algebra. They were introduced by Irving Kaplansky in 1951.[1] As operator algebras, von Neumann algebras, among all C*-algebras, are typically handled using one of two means: they are the dual space of some Banach space, and they are determined to a large extent by their projections. The idea behind AW*-algebras is to forgo the former, topological, condition, and use only the latter, algebraic, condition.

YouTube Encyclopedic

  • 1/3
    Views:
    31 399
    4 634
    974
  • Hilbert Spaces part 1
  • Properties Of Vectors Addition
  • Introduction to Lie Algebras Aula 1 Parte 1

Transcription

Definition

Recall that a projection of a C*-algebra is a self-adjoint idempotent element. A C*-algebra A is an AW*-algebra if for every subset S of A, the left annihilator

is generated as a left ideal by some projection p of A, and similarly the right annihilator is generated as a right ideal by some projection q:

.

Hence an AW*-algebra is a C*-algebras that is at the same time a Baer *-ring.

The original definition of Kaplansky states that an AW*-algebra is a C*-algebra such that (1) any set of orthogonal projections has a least upper bound, and (2) that each maximal commutative C*-subalgebra is generated by its projections. The first condition states that the projections have an interesting structure, while the second condition ensures that there are enough projections for it to be interesting.[1] Note that the second condition is equivalent to the condition that each maximal commutative C*-subalgebra is monotone complete.

Structure theory

Many results concerning von Neumann algebras carry over to AW*-algebras. For example, AW*-algebras can be classified according to the behavior of their projections, and decompose into types.[2] For another example, normal matrices with entries in an AW*-algebra can always be diagonalized.[3] AW*-algebras also always have polar decomposition.[4]

However, there are also ways in which AW*-algebras behave differently from von Neumann algebras.[5] For example, AW*-algebras of type I can exhibit pathological properties,[6] even though Kaplansky already showed that such algebras with trivial center are automatically von Neumann algebras.

The commutative case

A commutative C*-algebra is an AW*-algebra if and only if its spectrum is a Stonean space. Via Stone duality, commutative AW*-algebras therefore correspond to complete Boolean algebras. The projections of a commutative AW*-algebra form a complete Boolean algebra, and conversely, any complete Boolean algebra is isomorphic to the projections of some commutative AW*-algebra.

References

  1. ^ a b Kaplansky, Irving (1951). "Projections in Banach algebras". Annals of Mathematics. 53 (2): 235–249. doi:10.2307/1969540.
  2. ^ Berberian, Sterling (1972). Baer *-rings. Springer.
  3. ^ Heunen, Chris; Reyes, Manuel L. (2013). "Diagonalizing matrices over AW*-algebras". Journal of Functional Analysis. 264 (8): 1873–1898. arXiv:1208.5120. doi:10.1016/j.jfa.2013.01.022.
  4. ^ Ara, Pere (1989). "Left and right projections are equivalent in Rickart C*-algebras". Journal of Algebra. 120 (2): 433–448. doi:10.1016/0021-8693(89)90209-3.
  5. ^ Wright, J. D. Maitland. "AW*-algebra". Springer.
  6. ^ Ozawa, Masanao (1984). "Nonuniqueness of the cardinality attached to homogeneous AW*-algebras". Proceedings of the American Mathematical Society. 93: 681–684. doi:10.2307/2045544.
This page was last edited on 6 July 2021, at 01:50
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.