To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

ALEPH experiment

From Wikipedia, the free encyclopedia

Large Electron-Positron Collider experiments
ALEPHApparatus for LEP PHysics
DELPHIDEtector with Lepton, Photon and Hadron Identification
OPALOmni-Purpose Apparatus for LEP
L3Third LEP experiment

ALEPH was a particle detector at the Large Electron-Positron collider (LEP) at CERN. It was designed to explore the physics predicted by the Standard Model and to search for physics beyond it.[1][2][3]

YouTube Encyclopedic

  • 1/3
    Views:
    7 421 631
    15 419 027
    1 017
  • The Infinite Hotel Paradox - Jeff Dekofsky
  • The Banach–Tarski Paradox
  • Dr. Berebichez Radio Interview El Aleph Radio Centro

Transcription

In the 1920's, the German mathematician David Hilbert devised a famous thought experiment to show us just how hard it is to wrap our minds around the concept of infinity. Imagine a hotel with an infinite number of rooms and a very hardworking night manager. One night, the Infinite Hotel is completely full, totally booked up with an infinite number of guests. A man walks into the hotel and asks for a room. Rather than turn him down, the night manager decides to make room for him. How? Easy, he asks the guest in room number 1 to move to room 2, the guest in room 2 to move to room 3, and so on. Every guest moves from room number "n" to room number "n+1". Since there are an infinite number of rooms, there is a new room for each existing guest. This leaves room 1 open for the new customer. The process can be repeated for any finite number of new guests. If, say, a tour bus unloads 40 new people looking for rooms, then every existing guest just moves from room number "n" to room number "n+40", thus, opening up the first 40 rooms. But now an infinitely large bus with a countedly infinite number of passengers pulls up to rent rooms. Countedly infinite is the key. Now, the infinite bus of infinite passengers perplexes the night manager at first, but he realizes there's a way to place each new person. He asks the guest in room 1 to move to room 2. He then asks the guest in room 2 to move to room 4, the guest in room 3 to move to room 6, and so one. Each current guest moves from room number "n" to room number "2n", filling up only the infinite even-numbered rooms. By doing this, he has now emptied all of the infinitely many odd-numbered rooms, which are then taken by the people filing off the infinite bus. Everyone's happy and the hotel's business is booming more than ever. Well, actually, it is booming exactly the same amount as ever, banking an infinite number of dollars a night. Word spreads about this incredible hotel. People pour in from far and wide. One night, the unthinkable happens. The night manager looks outside and sees an infinite line of infinitely large buses, each with a countedly infinite number of passengers. What can he do? If he cannot find rooms for them, the hotel will lose out on an infinite amount of money, and he will surely lose his job. Luckily, he remembers that around the year 300 B.C.E., Euclid proved that there is an infinite quantity of prime numbers. So, to accomplish this seemingly impossible task of finding infinite beds for infinite buses of infinite weary travelers, the night manager assigns every current guest to the first prime number, 2, raised to the power of their current room number. So, the current occupant of room number 7 goes to room number 2^7, which is room 128. The night manager then takes the people on the first of the infinite buses and assigns them to the room number of the next prime, 3, raised to the power of their seat number on the bus. So, the person in seat number 7 on the first bus goes to room number 3^7 or room number 2,187. This continues for all of the first bus. The passengers on the second bus are assigned powers of the next prime, 5. The following bus, powers of 7. Each bus follows: powers of 11, powers of 13, powers of 17, etc. Since each of these numbers only has 1 and the natural number powers of their prime number base as factors, there are no overlapping room numbers. All the buses' passengers fan out into rooms using unique room assignment schemes based on unique prime numbers. In this way, the night manager can accomodate every passenger on every bus. Although, there will be many rooms that go unfilled, like room 6 since 6 is not a power of any prime number. Luckily, his bosses weren't very good in math, so his job is safe. The night manager's strategies are only possible because while the Infinite Hotel is certainly a logistical nightmare, it only deals with the lowest level of infinity, mainly, the countable infinity of the natural numbers, 1, 2, 3, 4, and so on. Georg Cantor called this level of infinity aleph-zero. We use natural numbers for the room numbers as well as the seat numbers on the buses. If we were dealing with higher orders of infinity, such as that of the real numbers, these structured strategies would no longer be possible as we have no way to systematically include every number. The Real Number Infinite Hotel has negative number rooms in the basement, fractional rooms, so the guy in room 1/2 always suspects he has less room than the guy in room 1. Square root rooms, like room radical 2 and room pi, where the guests expect free dessert. What self-respecting night manager would ever want to work there even for an infinite salary? But over at Hilbert's Infinite Hotel, where there's never any vacancy and always room for more, the scenarios faced by the ever diligent and maybe too hospitable night manager serve to remind us of just how hard it is for our relatively finite minds to grasp a concept as large as infinity. Maybe you can help tackle these problems after a good night's sleep. But honestly, we might need you to change rooms at 2 a.m.

Detector

The ALEPH detector had a time projection chamber at its core for detecting the direction and momenta of charged particles with extreme accuracy. In the foreground from the left, Jacques Lefrancois, Jack Steinberger, Lorenzo Foa and Pierre Lazeyras. ALEPH was an experiment on the LEP accelerator, which studied high-energy collisions between electrons and positrons (1989-2000)

The ALEPH detector was built to measure events created by electron positron collisions in LEP. It operated from 1989 to 1995 in the energy range of the Z particle (around 91 GeV) and later (1995 to 2000) above the threshold of W pair production (up to 200 GeV)[citation needed]. Typical events have many particles distributed in jets over the entire detector volume. The event rate ranged from around 1 Hz at the peak of the Z to at least a factor hundred smaller at the highest energies. The ALEPH detector was therefore designed to accumulate, for each event, as much information over as much solid angle as was practical.

This was achieved by a cylindrical arrangement around the beam pipe with the electron-positron interaction point in the middle. A magnetic field of 1.5 Tesla was created by a superconducting coil 6.4 m long and 5.3 m in diameter. The iron return yoke was a dodecagonal cylinder with two end-plates that left holes for a focusing magnet (quadrupole) of the LEP machine. The iron was 1.2 m thick and was subdivided into layers that left space for the insertion of layers of streamer tubes. In this way the iron yoke was a fully instrumented hadron calorimeter (HCAL), which was read out in 4608 projective towers. Outside the iron, there were two double layers of streamer tube chambers to record the position and angle of muons that had penetrated the iron.[4]

Inside the coil was the electron-photon calorimeter (ECAL), designed for the highest possible angular resolution and electron identification. It consisted of alternating layers of lead and proportional tubes read out in 73,728 projective towers, each subdivided into three depth zones. The central detector for charged particles was the time projection chamber (TPC), 4.4 m long and 3.6 m in diameter. It provided a three dimensional measurement of each track segment. In addition, it provided up to 330 ionisation measurements for a track; this was useful for particle identification. The TPC surrounded the inner track chamber (ITC); an axial-wire drift chamber with inner and outer diameters of 13 cm and 29 cm and a length of 2 m. It provided 8 track coordinates and a trigger signal for charged particles that came from the interaction point. Closest to the beam pipe, was a silicon strip vertex detector. For each track, this measured two pairs of coordinates, 6.3 cm and 11 cm away from the beam axis over a length of 40 cm along the beam line. The beam pipe, made out of beryllium, had a diameter of 16 cm. The vacuum inside was about 10−15 atm.[5][6]

References

  1. ^ ALEPH Collaboration (15 May 1983). ALEPH : technical report 1983 (PDF) (Report). CERN. CERN-LEPC-83-2 ; LEPC-P-1. Retrieved 29 January 2020.
  2. ^ Grupen, Claus; Hughes, Ian; Lynch, James G.; Settles, Ron. The ALEPH "experience" : 25 years of memories (PDF). Geneva: CERN. ISBN 9290832339.
  3. ^ CERN Website, CERN.
  4. ^ Decamp, D.; et al. (ALEPH Collaboration) (1990). "ALEPH: A detector for electron-positron annihilations at LEP". Nuclear Instruments and Methods in Physics Research Section A. 294 (1–2): 121–178. doi:10.1016/0168-9002(90)91831-U. ISSN 0168-9002.
  5. ^ ALEPH Website
  6. ^ Buskulic, D.; et al. (ALEPH Collaboration) (1995). "Performance of the ALEPH detector at LEP". Nuclear Instruments and Methods in Physics Research Section A. 360 (3): 481–506. Bibcode:1995NIMPA.360..481B. doi:10.1016/0168-9002(95)00138-7. ISSN 0168-9002. S2CID 120315427.

External links

This page was last edited on 4 September 2023, at 19:15
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.