To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.

(445473) 2010 VZ98

From Wikipedia, the free encyclopedia

(445473) 2010 VZ98
Discovery [1]
Discovered byD. L. Rabinowitz
M. E. Schwamb
S. Tourtellotte
Discovery siteLa Silla Obs.
Discovery date11 November 2010
MPC designation(445473) 2010 VZ98
2010 VZ98
TNO[2] · SDO[3] · p-DP[4]
Orbital characteristics[2]
Epoch 4 September 2017 (JD 2458000.5)
Uncertainty parameter 2
Observation arc16.90 yr (6,171 days)
Aphelion266.63 AU
Perihelion34.333 AU
150.48 AU
1846.03 yr (674,262 d)
0° 0m 1.8s / day
Physical characteristics
Mean diameter
401.33 km (calculated)[5]
443 km (calculated)[3]
471 km (calculated)[4]
9.72±0.05 h[5][6]
0.07 (assumed)[4]
0.09 (assumed)[3]
0.10 (assumed)[5]
B–V = 1.100±0.040[7]
V–R = 0.670±0.020[7]
4.81±0.04 (S)[6] · 5.0[1][2]
5.1[5] · 5.27[7] · 5.3[4]

(445473) 2010 VZ98, provisional designation 2010 VZ98, is a trans-Neptunian object of the scattered disc, orbiting the Sun in the outermost region of the Solar System. With a diameter of approximately 450 kilometers, it is possibly a dwarf planet.[4]

It was discovered on 11 November 2010, by American astronomers David Rabinowitz, Megan Schwamb and Suzanne Tourtellotte at ESO's La Silla Observatory site in northern Chile,[1] when it was 38 AU from the Sun.

Orbit and classification

2010 VZ98 orbits the Sun at a distance of 34.3–266.6 AU once every 1846 years (674,262 days; semi-major axis of 150.5 AU). Its orbit has a high eccentricity of 0.77 and an inclination of 5° with respect to the ecliptic.[2] Small number statistics suggest that this body may be trapped in a 3:2 orbital resonance with an unseen planet beyond Neptune with a semi-major axis of 195–215 AU.[8] The first precovery was taken by the Sloan Digital Sky Survey at the Apache Point Observatory in 1998, extending the body's observation arc by 12 years prior to its discovery. The precoveries were found in May 2015 (MPS 604632).[1]

Physical characteristics

A rotational lightcurve of 2010 VZ98 was obtained from photometric observation by members of the Carnegie Institution for Science at Las Campanas Observatory, Chile. The light-curve gave a rotation period of 9.72±0.05 hours with a brightness variation of 0.18 magnitude (U=n.a.).[6]

Diameter and albedo

While American astronomer Michael E. Brown assumes a diameter of 471 kilometers and an albedo of 0.07,[4] the Johnston's Archive estimates a diameter of 443 kilometers with generic albedo of 0.09.[3] The Collaborative Asteroid Lightcurve Link assumes an albedo of 0.10 and calculates a diameter of 401 kilometers.[5] These estimates are based on an absolute magnitude between 5.0 and 5.3.[4][5]


As of 2018, this minor planet remains unnamed.[1]

See also


  1. ^ a b c d e "445473 (2010 VZ98)". Minor Planet Center. Retrieved 7 September 2016.
  2. ^ a b c d "JPL Small-Body Database Browser: 445473 (2010 VZ98)" (2015-10-12 last obs.). Jet Propulsion Laboratory. Retrieved 2 June 2017.
  3. ^ a b c d Johnston, Wm. Robert (30 December 2017). "List of Known Trans-Neptunian Objects". Johnston's Archive. Retrieved 9 February 2018.
  4. ^ a b c d e f g Michael E. Brown. "How many dwarf planets are there in the outer solar system?". California Institute of Technology. Retrieved 9 February 2018.
  5. ^ a b c d e f g "LCDB Data for (445473)". Asteroid Lightcurve Database (LCDB). Retrieved 7 September 2016.
  6. ^ a b c Benecchi, Susan D.; Sheppard, Scott S. (May 2013). "Light Curves of 32 Large Transneptunian Objects". The Astronomical Journal. 145 (5): 19. arXiv:1301.5791. Bibcode:2013AJ....145..124B. doi:10.1088/0004-6256/145/5/124.
  7. ^ a b c Tegler, S. C.; Romanishin, W.; Consolmagno, G. J.; J., S. (December 2016). "Two Color Populations of Kuiper Belt and Centaur Objects and the Smaller Orbital Inclinations of Red Centaur Objects". The Astronomical Journal. 152 (6): 13. Bibcode:2016AJ....152..210T. doi:10.3847/0004-6256/152/6/210.
  8. ^ de la Fuente Marcos, C.; de la Fuente Marcos, R. (September 2014). "Extreme trans-Neptunian objects and the Kozai mechanism: signalling the presence of trans-Plutonian planets". Monthly Notices of the Royal Astronomical Society: Letters. 443 (1): L59–L63. arXiv:1406.0715. Bibcode:2014MNRAS.443L..59D. doi:10.1093/mnrasl/slu084. Retrieved 7 September 2016.

External links

This page was last edited on 11 July 2019, at 13:16
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.