In mathematics, specifically, in category theory, a 2functor is a morphism between 2categories.^{[1]} They may be defined formally using enrichment by saying that a 2category is exactly a Catenriched category and a 2functor is a Catfunctor.^{[2]}
Explicitly, if C and D are 2categories then a 2functor consists of
 a function , and
 for each pair of objects , a functor
such that each strictly preserves identity objects and they commute with horizontal composition in C and D.
See ^{[3]} for more details and for lax versions.
YouTube Encyclopedic

1/3Views:10 1325 5962 195

Category Theory 6.2: Functors in programming

Highest common functor and list common multiple

Haskell42
Transcription
References