To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

1-Phenylethanol

From Wikipedia, the free encyclopedia

1-Phenylethanol
Names
IUPAC name
1-Phenylethanol
Other names
Styrallyl alcohol
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.002.461 Edit this at Wikidata
EC Number
  • 202-707-1
UNII
UN number 2937
  • InChI=1S/C8H10O/c1-7(9)8-5-3-2-4-6-8/h2-7,9H,1H3
    Key: WAPNOHKVXSQRPX-UHFFFAOYSA-N
  • CC(C1=CC=CC=C1)O
Properties
C8H10O
Molar mass 122.167 g·mol−1
Appearance Colourless liquid with a floral[1] or almond-like odor[2]
Melting point 20.7 °C (69.3 °F; 293.8 K)
Boiling point 204 °C (399 °F; 477 K)
1.95 g dm−3[3]
log P 1.4
Hazards
Flash point 93 °C (199 °F; 366 K)[5]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

1-Phenylethanol is the organic compound with the formula C6H5CH(OH)CH3. It is one of the most commonly available chiral alcohols. It is a colorless liquid with a mild gardenia-hyacinth scent.[4]

Phenylethanol is an aromatic alcohol, it has the role of mouse metabolite. It is a natural product and is found in Cichorium endivia, Castanopsis cuspidata and other organisms.[6]

YouTube Encyclopedic

  • 1/3
    Views:
    15 065
    48 027
    44 795
  • Tosylation of Alcohols - TsCl Tosyl Chloride - Alkyl Tosylate
  • Grignard Reagent Synthesis Reaction Mechanism - Organic Chemistry
  • Alcohol Dehydration Reaction Mechanism With H2SO4 - Acid Catalyzed

Transcription

Natural occurrence

1-Phenylethanol is found in nature as a glycoside, together with its hydrolase β-primeverosidase in tea (Camellia sinensis) flowers.[7] It is also reportedly present in cranberries, grapes, chives, Scottish spearmint oil, cheeses, cognac, rum, white wine, cocoa, black tea, filbert, cloudberries, beans, mushrooms, and endives.[8]

Synthesis

Racemic 1-phenylethanol is produced by the reduction of acetophenone by sodium borohydride. Alternatively, benzaldehyde can be reacted with methylmagnesium chloride or similar organometallic compounds to afford racemic 1-phenylethanol.

Asymmetric hydrogenation of acetophenone by Noyori catalysts proceeds quantitatively (50 atm H2, room temperature, minutes) in >99% e.e.[9]

See also

References

  1. ^ Lewis, R.J., Sr (Ed.). Hawley's Condensed Chemical Dictionary. 12th ed. New York, NY: Van Nostrand Rheinhold Co., 1993, p. 759
  2. ^ Gerhartz, W. (exec ed.). Ullmann's Encyclopedia of Industrial Chemistry. 5th ed.Vol A1: Deerfield Beach, FL: VCH Publishers, 1985 to Present., p. VA24 488
  3. ^ Southworth GR, Keller JL; Water Air Soil Poll 28: 239-48 (1986)
  4. ^ a b Fenaroli's Handbook of Flavor Ingredients. Volume 2. Edited, translated, and revised by T.E. Furia and N. Bellanca. 2nd ed. Cleveland: The Chemical Rubber Co., 1975., p. 348
  5. ^ Fire Protection Guide to Hazardous Materials. 12 ed. Quincy, MA: National Fire Protection Association, 1997., p. 325-71
  6. ^ PubChem. "1-Phenylethanol". pubchem.ncbi.nlm.nih.gov. Retrieved 2023-09-10.
  7. ^ Zhou, Ying; Dong, Fang; Kunimasa, Aiko; Zhang, Yuqian; Cheng, Sihua; Lu, Jiamin; Zhang, Ling; Murata, Ariaki; Mayer, Frank (2014-08-13). "Occurrence of glycosidically conjugated 1-phenylethanol and its hydrolase β-primeverosidase in tea (Camellia sinensis) flowers". Journal of Agricultural and Food Chemistry. 62 (32): 8042–8050. doi:10.1021/jf5022658. ISSN 1520-5118. PMID 25065942.
  8. ^ Burdock, George A. (2005). Fenaroli's Handbook of Flavor Ingredients, Fifth Edition. CRC Press.
  9. ^ Dub, Pavel A.; Gordon, John C. (2018). "The role of the metal-bound N–H functionality in Noyori-type molecular catalysts". Nature Reviews Chemistry. 2 (12): 396–408. doi:10.1038/s41570-018-0049-z. S2CID 106394152.
This page was last edited on 12 February 2024, at 16:15
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.