To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

1,3-Dichloro-1,1,2,2,3-pentafluoropropane

From Wikipedia, the free encyclopedia

1,3-Dichloro-1,1,2,2,3-pentafluoropropane
Names
IUPAC name
1,3-dichloro-1,1,2,2,3-pentafluoropropane
Identifiers
3D model (JSmol)
1748901
ChemSpider
ECHA InfoCard 100.007.343 Edit this at Wikidata
EC Number
  • 208-076-9
UNII
UN number 3082
  • InChI=1S/C3HCl2F5/c4-1(6)2(7,8)3(5,9)10/h1H
    Key: UJIGKESMIPTWJH-UHFFFAOYSA-N
  • C(C(C(F)(F)Cl)(F)F)(F)Cl
Properties
C3HCl2F5
Molar mass 202.93 g·mol−1
Appearance Clear, colorless
Odor Odorless
Density 1.56 g/mL (Liquid)
Melting point −97 °C (−143 °F; 176 K)
Boiling point 56 °C (133 °F; 329 K)
Vapor pressure 38.13kPa @ 25 °C
Thermal conductivity 0.057 W/m-K
Hazards
GHS labelling:[1]
GHS07: Exclamation mark
Warning
H315, H319, H332
P261, P264, P264+P265, P271, P280, P302+P352, P304+P340, P305+P351+P338, P317, P321, P332+P317, P337+P317, P362+P364
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

1,3-Dichloro-1,1,2,2,3-pentafluoropropane (HCFC-225cb, chemical formula C3HF5Cl2) is a hydrochlorofluorocarbon. It is a volatile derivative of propane which has served as an HCFC replacement for the CFC, 1,1,2-trichloro-1,2,2-trifluoroethane which was used as a cleaning agent which has been used in the aerospace and electronics industries [2] since the phase out of class 1 ozone depleting substances by the Montreal Protocol.[3] As of 2015[4] with the phase out of hydrochlorofluorocarbons, HCFC-225 is included in this phase out, and applications where it was used must now be fulfilled by non-ozone depleting substances.[5]

Atmospheric effects

The production of 1,3-dichloro-1,1,2,2,3-pentafluoropropane and use as a cleaning agent replacement for CFC-113 may result in its release to the environment through various waste streams. If released to air, a vapor pressure of 286 mm Hg at 25 °C indicates 1,3-dichloro-1,1,2,2,3-pentafluoropropane will exist solely as a vapor in the ambient atmosphere. When released in air, it is subject to degradation in the atmosphere by reaction with photochemically produced hydroxyl radicals; the half-life for this reaction in air is estimated to be 4.9 years.[6]

Manufacturing

1,3-Dichloro-1,1,2,2,3-pentafluoropropane is manufactured in industry by the addition of Dichlorofluoromethane to Tetrafluoroethylene.[7] In 2016, production in the United States accounted to 11,339 Kilograms. 1,3-Dichloro-1,1,2,2,3-pentafluoropropane is fairly inert under most normal conditions, however if heated to extreme temperatures it may react with metals. When reacted with strong bases, toxic gases can be released. [8]

Role within the aerospace industry

1,3-Dichloro-1,1,2,2,3-pentafluoropropane, known in the aerospace industry as AK-225G, has been used by NASA and the United States Department of Defense to clean oxygen breathing systems. Prior to 1996, NASA and the DoD had selected CFC-113 (1,1,2-trichloro-1,2,2-trifluoroethane) as the solvent of choice because it was effective, less toxic, and compatible with most materials used within construction, and not reactive with oxygen. Since the enforcement of the Montreal Protocol in 1996 HCFC-225 was selected as an interim replacement for cleaning large scale propulsion oxygen systems at NASA.[9]

Use as a cleaning solvent for parts often involves involves flushing, vapour degreasing, and hand wiping the components. Some components may be cleaned with water based cleaners, but these are then flushed and verified clean with HCFC-225. NASA has made efforts to recapture, distill, and re-use HCFC-225 where it is feasible. However, many users within the aerospace industry still rely on stockpiled CFC-113. In 2002, the DoD permitted DuPont Ikon P (perfluorobutyl iodide) solution for use where HCFC-225 is now banned, however, DuPont has since discontinued Ikon P and both the aerospace industry and Department of Defense are still readily searching for alternatives.[10]

See also

References

  1. ^ "1,3-Dichloro-1,1,2,2,3-pentafluoropropane". pubchem.ncbi.nlm.nih.gov. Retrieved 13 April 2022.
  2. ^ 12 d-Limonene: A Safe and Versatile Naturally Occurring Alternative Solvent
  3. ^ Replacement study brulin.com
  4. ^ Technical resource ipc.org
  5. ^ "1,3-Dichloro-1,1,2,2,3-pentafluoropropane".
  6. ^ "1,3-Dichloro-1,1,2,2,3-pentafluoropropane".
  7. ^ "1,3-Dichloro-1,1,2,2,3-pentafluoropropane".
  8. ^ HCFC-225aa noaa.gov
  9. ^ Market report epa.gov
  10. ^ Mitchell, Mark A.; Lowrey, Nikki M. (1 January 2015). "Replacement of HCFC-225 Solvent for Cleaning NASA Propulsion Oxygen Systems". NASA Technical Reports Server (NTRS). Retrieved 18 November 2023.
This page was last edited on 13 January 2024, at 21:16
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.