To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

ε-quadratic form

From Wikipedia, the free encyclopedia

In mathematics, specifically the theory of quadratic forms, an ε-quadratic form is a generalization of quadratic forms to skew-symmetric settings and to *-rings; ε = ±1, accordingly for symmetric or skew-symmetric. They are also called -quadratic forms, particularly in the context of surgery theory.

There is the related notion of ε-symmetric forms, which generalizes symmetric forms, skew-symmetric forms (= symplectic forms), Hermitian forms, and skew-Hermitian forms. More briefly, one may refer to quadratic, skew-quadratic, symmetric, and skew-symmetric forms, where "skew" means (−) and the * (involution) is implied.

The theory is 2-local: away from 2, ε-quadratic forms are equivalent to ε-symmetric forms: half the symmetrization map (below) gives an explicit isomorphism.

YouTube Encyclopedic

  • 1/5
    Views:
    52 946
    7 145
    47 900
    610 813
    462 010
  • A Quadratic Epsilon-Delta Proof (Part 3 of 3)
  • Definition of a Limit Epsilon Delta Quadratic Function
  • Quadratic Regression
  • Epsilon-delta limit definition 1 | Limits | Differential Calculus | Khan Academy
  • Proving a limit using epsilon-delta definition

Transcription

Definition

ε-symmetric forms and ε-quadratic forms are defined as follows.[1]

Given a module M over a *-ring R, let B(M) be the space of bilinear forms on M, and let T : B(M) → B(M) be the "conjugate transpose" involution B(u, v) ↦ B(v, u)*. Since multiplication by −1 is also an involution and commutes with linear maps, −T is also an involution. Thus we can write ε = ±1 and εT is an involution, either T or −T (ε can be more general than ±1; see below). Define the ε-symmetric forms as the invariants of εT, and the ε-quadratic forms are the coinvariants.

As an exact sequence,

As kernel and cokernel,

The notation Qε(M), Qε(M) follows the standard notation MG, MG for the invariants and coinvariants for a group action, here of the order 2 group (an involution).

Composition of the inclusion and quotient maps (but not 1 − εT) as yields a map Qε(M) → Qε(M): every ε-symmetric form determines an ε-quadratic form.

Symmetrization

Conversely, one can define a reverse homomorphism "1 + εT": Qε(M) → Qε(M), called the symmetrization map (since it yields a symmetric form) by taking any lift of a quadratic form and multiplying it by 1 + εT. This is a symmetric form because (1 − εT)(1 + εT) = 1 − T2 = 0, so it is in the kernel. More precisely, . The map is well-defined by the same equation: choosing a different lift corresponds to adding a multiple of (1 − εT), but this vanishes after multiplying by 1 + εT. Thus every ε-quadratic form determines an ε-symmetric form.

Composing these two maps either way: Qε(M) → Qε(M) → Qε(M) or Qε(M) → Qε(M) → Qε(M) yields multiplication by 2, and thus these maps are bijective if 2 is invertible in R, with the inverse given by multiplication with 1/2.

An ε-quadratic form ψQε(M) is called non-degenerate if the associated ε-symmetric form (1 + εT)(ψ) is non-degenerate.

Generalization from *

If the * is trivial, then ε = ±1, and "away from 2" means that 2 is invertible: 1/2 ∈ R.

More generally, one can take for εR any element such that ε*ε = 1. ε = ±1 always satisfy this, but so does any element of norm 1, such as complex numbers of unit norm.

Similarly, in the presence of a non-trivial *, ε-symmetric forms are equivalent to ε-quadratic forms if there is an element λR such that λ* + λ = 1. If * is trivial, this is equivalent to 2λ = 1 or λ = 1/2, while if * is non-trivial there can be multiple possible λ; for example, over the complex numbers any number with real part 1/2 is such a λ.

For instance, in the ring (the integral lattice for the quadratic form 2x2 − 2x + 1), with complex conjugation, are two such elements, though 1/2 ∉ R.

Intuition

In terms of matrices (we take V to be 2-dimensional), if * is trivial:

  • matrices correspond to bilinear forms
  • the subspace of symmetric matrices correspond to symmetric forms
  • the subspace of (−1)-symmetric matrices correspond to symplectic forms
  • the bilinear form yields the quadratic form
,
  • the map 1 + T from quadratic forms to symmetric forms maps

to , for example by lifting to and then adding to transpose. Mapping back to quadratic forms yields double the original: .

If is complex conjugation, then

  • the subspace of symmetric matrices are the Hermitian matrices
  • the subspace of skew-symmetric matrices are the skew-Hermitian matrices

Refinements

An intuitive way to understand an ε-quadratic form is to think of it as a quadratic refinement of its associated ε-symmetric form.

For instance, in defining a Clifford algebra over a general field or ring, one quotients the tensor algebra by relations coming from the symmetric form and the quadratic form: vw + wv = 2B(v, w) and . If 2 is invertible, this second relation follows from the first (as the quadratic form can be recovered from the associated bilinear form), but at 2 this additional refinement is necessary.

Examples

An easy example for an ε-quadratic form is the standard hyperbolic ε-quadratic form . (Here, R* := HomR(R, R) denotes the dual of the R-module R.) It is given by the bilinear form . The standard hyperbolic ε-quadratic form is needed for the definition of L-theory.

For the field of two elements R = F2 there is no difference between (+1)-quadratic and (−1)-quadratic forms, which are just called quadratic forms. The Arf invariant of a nonsingular quadratic form over F2 is an F2-valued invariant with important applications in both algebra and topology, and plays a role similar to that played by the discriminant of a quadratic form in characteristic not equal to two.

Manifolds

The free part of the middle homology group (with integer coefficients) of an oriented even-dimensional manifold has an ε-symmetric form, via Poincaré duality, the intersection form. In the case of singly even dimension 4k + 2, this is skew-symmetric, while for doubly even dimension 4k, this is symmetric. Geometrically this corresponds to intersection, where two n/2-dimensional submanifolds in an n-dimensional manifold generically intersect in a 0-dimensional submanifold (a set of points), by adding codimension. For singly even dimension the order switches sign, while for doubly even dimension order does not change sign, hence the ε-symmetry. The simplest cases are for the product of spheres, where the product S2k × S2k and S2k+1 × S2k+1 respectively give the symmetric form and skew-symmetric form In dimension two, this yields a torus, and taking the connected sum of g tori yields the surface of genus g, whose middle homology has the standard hyperbolic form.

With additional structure, this ε-symmetric form can be refined to an ε-quadratic form. For doubly even dimension this is integer valued, while for singly even dimension this is only defined up to parity, and takes values in Z/2. For example, given a framed manifold, one can produce such a refinement. For singly even dimension, the Arf invariant of this skew-quadratic form is the Kervaire invariant.

Given an oriented surface Σ embedded in R3, the middle homology group H1(Σ) carries not only a skew-symmetric form (via intersection), but also a skew-quadratic form, which can be seen as a quadratic refinement, via self-linking. The skew-symmetric form is an invariant of the surface Σ, whereas the skew-quadratic form is an invariant of the embedding Σ ⊂ R3, e.g. for the Seifert surface of a knot. The Arf invariant of the skew-quadratic form is a framed cobordism invariant generating the first stable homotopy group .

In the standard embedding of the torus, a (1, 1) curve self-links, thus Q(1, 1) = 1.

For the standard embedded torus, the skew-symmetric form is given by (with respect to the standard symplectic basis), and the skew-quadratic refinement is given by xy with respect to this basis: Q(1, 0) = Q(0, 1) = 0: the basis curves don't self-link; and Q(1, 1) = 1: a (1, 1) self-links, as in the Hopf fibration. (This form has Arf invariant 0, and thus this embedded torus has Kervaire invariant 0.)

Applications

A key application is in algebraic surgery theory, where even L-groups are defined as Witt groups of ε-quadratic forms, by C.T.C.Wall

References

  1. ^ Ranicki, Andrew (2001). "Foundations of algebraic surgery". arXiv:math/0111315.
This page was last edited on 21 May 2023, at 05:04
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.