To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Local diffeomorphism

From Wikipedia, the free encyclopedia

In mathematics, more specifically differential topology, a local diffeomorphism is intuitively a map between Smooth manifolds that preserves the local differentiable structure. The formal definition of a local diffeomorphism is given below.

YouTube Encyclopedic

  • 1/5
    Views:
    21 721
    5 714
    3 035
    41 052
    429
  • What is a Manifold? Lesson 8: Diffeomorphisms
  • Differential Geometry: Lecture 13 part 4: diffeomorphism of surfaces
  • Manifolds 2.3 : Smooth Maps and Diffeomorphisms
  • Manifolds #1 - Introducing Manifolds
  • A program for classifying transitive Anosov diffeomorphisms - Clark Butler

Transcription

Formal definition

Let and be differentiable manifolds. A function is a local diffeomorphism, if for each point there exists an open set containing such that is open in and

is a diffeomorphism.

A local diffeomorphism is a special case of an immersion where the image of under locally has the differentiable structure of a submanifold of Then and may have a lower dimension than

Characterizations

A map is a local diffeomorphism if and only if it is a smooth immersion (smooth local embedding) and an open map.

The inverse function theorem implies that a smooth map is a local diffeomorphism if and only if the derivative is a linear isomorphism for all points This implies that and must have the same dimension.

A map between two connected manifolds of equal dimension () is a local diffeomorphism if and only if it is a smooth immersion (smooth local embedding), or equivalently, if and only if it is a smooth submersion. This is because every smooth immersion is a locally injective function while invariance of domain guarantees that any continuous injective function between manifolds of equal dimensions is necessarily an open map.

Discussion

For instance, even though all manifolds look locally the same (as for some ) in the topological sense, it is natural to ask whether their differentiable structures behave in the same manner locally. For example, one can impose two different differentiable structures on that make into a differentiable manifold, but both structures are not locally diffeomorphic (see below). Although local diffeomorphisms preserve differentiable structure locally, one must be able to "patch up" these (local) diffeomorphisms to ensure that the domain is the entire (smooth) manifold. For example, there can be no global diffeomorphism from the 2-sphere to Euclidean 2-space although they do indeed have the same local differentiable structure. This is because all local diffeomorphisms are continuous, the continuous image of a compact space is compact, the sphere is compact whereas Euclidean 2-space is not.

Properties

If a local diffeomorphism between two manifolds exists then their dimensions must be equal. Every local diffeomorphism is also a local homeomorphism and therefore a locally injective open map. A local diffeomorphism has constant rank of

Examples

A diffeomorphism is a bijective local diffeomorphism. A smooth covering map is a local diffeomorphism such that every point in the target has a neighborhood that is evenly covered by the map.

Local flow diffeomorphisms

See also

References

  • Michor, Peter W. (2008), Topics in differential geometry, Graduate Studies in Mathematics, vol. 93, Providence, R.I.: American Mathematical Society, ISBN 978-0-8218-2003-2, MR 2428390.
This page was last edited on 15 December 2022, at 22:18
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.