Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Физика высоких плотностей энергии

Из Википедии — свободной энциклопедии

Фи́зика высо́ких плотносте́й эне́ргий (англ. High Energy Density Physics, HED Physics) — раздел физики на стыке физики конденсированного состояния и физики плазмы, занимающийся изучением систем, имеющих высокую плотность энергии. Под высокой обычно понимается плотность, превышающая плотность энергии в атоме водорода, равную величине 1011 Дж/м³, что соответствует давлениям порядка 1 Мбар (1011 Па)[1].

Предмет изучения

Предметом изучения физики высоких плотностей энергии является вещество, плотность энергии в котором превышает величину 105 Дж/см³, или другими словами его внутреннее давление выше, чем 1 Мбар (1011 Па). При таких давлениях любое вещество испытывает существенное сжатие, а составляющие его протоны и электроны перестают быть связанными внутриатомными силами, образуя сверхплотную плазму. Высоких давлений можно также достигнуть путём нагрева вещества до высоких температур. Например, воздух, имеющий при комнатной температуре и атмосферном давлении плотность порядка 10−3 г/см³, достигает давления в 1 Мбар при температуре порядка 108 K или 10 кэВ. В этих условиях воздух ионизируется, также образуя плазму. Вещество, имеющее высокую плотность энергии, похоже на плазму и конденсированное состояние тем, что в его свойствах существенную роль играют коллективные эффекты, однако в то же время по сравнению с традиционной плазмой частицы в этом случае более коррелированы, а по сравнению с обычным конденсированным состоянием бо́льшую роль играют ионизация и кулоновское взаимодействие[2].

История развития экспериментального оборудования

Лабораторная установка Z-пинча

Появление первых работ в области физики высоких плотностей энергии в 1930-х годах связано с развитием ускорителей, позволивших фокусировать пучки энергичных частиц в небольшом объёме. Развитие ядерного оружия в 1940-х также позволило получать вещество с высокой плотностью энергии, однако в виде, непригодном для проведения систематических научных исследований. В 1950-х была разработана система Z-пинч, предназначенная для сжатия горячей плазмы с целью достижения условий, необходимых для инициирования управляемой термоядерной реакции. А в конце 1950-х — 1960-х появились и были быстро освоены лазерные технологии, позволившие получать в экспериментальных условиях высокие интенсивности оптического излучения. В то же время возникла идея использования сверхмощного лазерного излучения для целей инерциального термоядерного синтеза. Эти разработки послужили предпосылками для возникновения нового раздела в физике, занимающимся изучением свойств вещества в состоянии с высокой плотностью энергии.

Фемтосекундный лазер на титан-сапфире, использующий технологию усиления чирпированных импульсов

В 1970-х годах лазеры постепенно наращивали свою мощность, однако всё ещё не позволяли проводить систематические исследования. Революция в экспериментальной лазерной технике произошла в 1980-х годах. В это время были освоены технологии синхронизации нескольких лазеров, позволявшие в одном выстреле использовать лазеры как для инициации некоторых процессов, так и для их анализа. В то же время появились технические возможности регистрации событий сверхкороткой — субнаносекундной — длительности. Это открыло возможности для детального изучения процессов в плотном веществе, образованном при взаимодействии лазерного излучения с мишенями.

В середине 1980-х годов было сделано ещё одно важное изобретение: технология усиления чирпированных импульсов (CPA), позволившая резко увеличить мощность и интенсивность излучения. В частности, была достигнута интенсивность излучения более 1018 Вт/см², при которой энергия колебаний электрона в поле волны сравнивается с их энергией покоя, то есть существенную роль начинают играть релятивистские эффекты.

В 1990-х годах развитие получила технология Z-пинчей, была разработана так называемая схема быстрого Z-пинча, позволившая существенно снизить влияние гидродинамических неустойчивостей, не позволявших достаточно сильно сжать вещество.

В то же время продолжалось развитие ускорительных технологий. Так, например, ускоритель SLAC позволял получать 1010 электронов, ускоренных до энергии в 50 ГэВ, при этом длительность электронного импульса составляла всего 5 пс, а диаметр пятна фокусировки — 3 мкм. Такой пучок сам по себе представляет среду с высокой плотностью энергии, но кроме того может использоваться и для облучения других веществ.

Основные направления исследований

Мишень для инерционного термоядерного синтеза

Вещество в состоянии с высокой плотностью энергии в природе может встречаться в различных ситуациях. При этом, несмотря на некоторую общность рассматриваемых вопросов, каждое направление исследований имеет свою специфику. Исторически первым возникла задача управляемого термоядерного синтеза, и в частности проблема инерциального синтеза, при решении которой и приходится проводить изучение вещества в сверхплотном состоянии. Другим направлением, появившимся чуть позже, стала экспериментальная астрофизика, в рамках которой в земных условиях моделируются процессы, идущие в астрофизических объектах, например, звёздах. Отдельно стоят задачи взаимодействия сверхмощного лазерного излучения с веществом, не направленные на получение термоядерной реакции, в частности, к таким задачам относятся лазерное ускорение электронов и ионов, генерация рентгеновского излучения и получение аттосекундных импульсов.

Примечания

  1. Drake, 2006, p. 1.
  2. Drake, 2006, pp. 1—2.

Литература

  • R. Paul Drake. High-Energy-Density Physics: Fundamentals, Inertial Fusion, and Experimental Astrophysics. — Berlin Heidelberg: Springer-Verlag, 2006. — 534 p. — ISBN 3-540-29314-0.
Эта страница в последний раз была отредактирована 13 ноября 2022 в 18:50.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).