Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Триптофановый оперон

Из Википедии — свободной энциклопедии

Строение триптофанового оперона Escherichia coli

Триптофа́новый оперо́н — оперон, содержащий гены ферментов, задействованных в биосинтезе аминокислоты триптофан. Триптофановый оперон имеется у многих бактерий, впервые был описан у Escherichia coli. Триптофановый оперон является важной экспериментальной моделью для изучения регуляции экспрессии генов.

Триптофановый оперон был описан в 1953 году Жаком Моно и сотрудниками. Он стал первым опероном, для которого была показана регуляция посредством репрессии. В то время как лактозный оперон активируется веществом, на утилизацию которого он направлен (лактозой), триптофановый оперон подавляется триптофаном — соединением, за биосинтез которого ответственен данный оперон. Он содержит 5 структурных генов (цистронов): trpE, trpD, trpC, а также trpB и trpA, кодирующие субъединицы триптофансинтазы[en]. На значительном расстоянии от оперона находится ген trpR, кодирующий белок, подавляющий экспрессию триптофанового оперона. Продукт этого гена в присутствии триптофана связывается с оператором и блокирует транскрипцию оперона. В отличие от lac-оперона, в состав trp-оперона входит особая последовательность — аттенюатор[en], необходимая для тонкой регуляции транскрипции оперона.

Регуляция

Регуляция триптофаного оперона осуществляется двумя способами: с помощью белка-репрессора (репрессия), а также с помощью особой последовательности — аттенюатора. При этом в каждом из этих случаев регуляция осуществляется по принципу отрицательной обратной связи.

Репрессия

Структура триптофанового белка-репрессора

Белок-репрессор (триптофановый репрессор) имеет молекулярную массу 58 кДа, кодируется геном trpR, расположенным на значительном расстоянии от самого оперона. Ген trpR непрерывно экспрессируется на невысоком уровне, образуя мономеры, которые затем объединяются в димеры. В отсутствие триптофана эти димеры неактивны и распадаются в цитоплазме. Однако если концентрация триптофана в клетке высока, то димеры связываются с триптофаном. При этом происходит изменение конформации репрессора, позволяющее ему связаться с оператором. В данном случае существенно, что в триптофановом опероне нуклеотидные последовательности оператора и промотора перекрываются, так что присоединение комплекса L-триптофан•белок-репрессор автоматически блокирует связывание РНК-полимеразы с промотором. Таким образом, транскрипция триптофанового оперона блокируется[1].

Аттенюация

Механизм регуляции trp-оперона при участии аттенюатора

Аттенюация является вторым механизмом регуляции trp-оперона. Этот способ регуляции возможен потому, что у прокариот, лишённых ядра, процессы транскрипции и трансляции не разделены во времени и пространстве, как у эукариот, и идут одновременно: пока РНК-полимераза синтезирует мРНК, синтезированный участок этой мРНК транслируется рибосомой. В связи с этим процесс трансляции может оказывать непосредственное влияние на транскрипцию оперона.

Сразу после оператора в триптофановом опероне располагается последовательность длиной 162 п. н.[2], получившая название лидерной последовательности. Она кодирует так называемый лидерный пептид, который получил такое название, поскольку с полицистронной мРНК триптофанового оперона этот пептид синтезируется первым. В состав лидерной последовательности входит особая аттенюаторная последовательность (аттенюатор), которая, влияя на вторичную структуру синтезируемой мРНК, способна вызывать преждевременную терминацию транскрипции. Аналогичная последовательность имеется также у бактерий рода Salmonella[3].

В trp-опероне Escherichia coli аттенюатор имеет 4 области с обращёнными повторами[en]. Транскрипция аттенюатора приводит к образованию шпилек в мРНК. Возможны 3 варианта шпилек, а именно между последовательностями: 1—2, 2—3, 3—4. При этом образование шпильки 1—2 блокирует образование шпильки 2—3, а образование шпильки 2—3, в свою очередь, препятствует образованию шпильки 3—4. Только шпилька 3—4 является терминаторной, то есть при её образовании РНК-полимераза с высокой вероятностью диссоциирует от ДНК, и транскрипция прерывается.

Часть лидерного транскрипта кодирует короткий пептид длиной 14 аминокислотных остатков — лидерный пептид. Этот пептид содержит 2 располагающихся друг за другом триптофановых остатка. Триптофан — редкая аминокислота (на 100 остатков аминокислот белка Escherichia coli приходится 1 триптофановый остаток), в условиях нехватки триптофана внутриклеточная концентрация комплекса W-tRNATrp•EF-Tu•GTP становится очень низкой и рибосома начинает «зависать» на триптофановых кодонах, так как соответствующий комплекс не может «найтись» быстро. Останавливаясь на двух триптофановых кодонах, рибосома закрывает первую из 4 областей обращённых повторов. Из-за этого образуется шпилька 2—3, а терминаторная шпилька 3—4 не образуется, и транскрипция продолжается дальше в область структурных генов. Итак, в условиях недостатка триптофана ферменты, необходимые для его синтеза, образуются[3].

Если же концентрация триптофана высока, то «зависания» рибосомы на триптофановых кодонах не происходит: необходимый комплекс триптофанил-тРНКTrp находится быстро. В этом случае рибосома закрывает уже не одну первую, а две первые области обращённых повторов. Остаются свободными области 3 и 4, из-за чего формируется терминаторная шпилька 3—4, а значит, транскрипция останавливается. В итоге образуется лишь короткий нефункциональный пептид. Таким образом, в условиях избытка триптофана ферменты, необходимые для его синтеза, не образуются[3].

Для правильной работы аттенюатора чрезвычайно важна одновременность процессов транскрипции и трансляции лидерного пептида. Чтобы обеспечить её, в лидерной области имеется особый «сайт паузы». Достигнув его, РНК-полимераза приостанавливает транскрипцию, пока не начнётся трансляция. Таким образом процессы транскрипции и трансляции протекают синхронизированно.

Схожий механизм аттенюации имеет место при синтезе других аминокислот: гистидина, фенилаланина и треонина[4]. В аттенюаторе гистидинового оперона Escherichia coli имеется 7 гистидиновых кодонов, фенилаланинового — 7 фенилаланиновых кодонов[5].

Триптофановый оперон Bacillus subtilis

У Bacillus subtilis также имеется триптофановый оперон, транскрипция которого контролируется с помощью аттенюации, однако механизм его регуляции несколько отличается от такового у Escherichia coli. Шпильки могут образовываться в районах А—В и C—D аттенюатора, но лишь последняя вызывает терминацию транскрипции. В отсутствие триптофана образуется шпилька А—В. Так как области В и С частично перекрываются, образование такой шпильки препятствует образованию шпильки С—D, следовательно, транскрипция оперона идёт полностью. Ключевыми отличиями триптофанового оперона Bacillus subtilis от такового у Escherichia coli являются, во-первых, наличие 11 повторяющихся кодонов в лидерной мРНК (GAG или UAG), а также наличие особого связывающегося с РНК белка, называемого TRAP (от англ. trp RNA-binding Attenuation Protein). При высокой концентрации триптофана TRAP связывается с вышеуказанными повторяющимися последовательностями. Так как GAG/UAG-повторы охватывают всю область А, а также частично область В, то шпилька А—В не может образоваться. Это позволяет образоваться шпильке С—D, которая, как говорилось выше, является терминаторной. Таким образом, при наличии триптофана транскрипция trp-оперона блокируется[6].

См. также

Примечания

  1. Коничев, Севастьянова, 2012, с. 257—258.
  2. Dale, Park, 2004, с. 88.
  3. 1 2 3 Коничев, Севастьянова, 2012, с. 260.
  4. Daniel J, Saint-Girons I. Attenuation in the threonine operon: effects of amino acids present in the presumed leader peptide in addition to threonine and isoleucine. // Mol Gen Genet.. — 1982. — Т. 188, № 2. — С. 225—227.
  5. Dale, Park, 2004, с. 89.
  6. Dale, Park, 2004, с. 91—92.

Литература

  • Коничев А. С., Севастьянова Г. А. Молекулярная биология. — Издательский центр «Академия», 2012. — 400 с. — ISBN 978-5-7695-9147-1.
  • Morse, DE; Mosteller RD; Yanofsky C (1969). "Dynamics of synthesis, translation, and degradation of trp operon messenger RNA in E. coli.". Cold Spring Harb Symp Quant Biol. 34: 725–40. PMID 4909527.
  • Yanofsky, Charles (1981). "Attenuation in the control of expression of bacterial operons". Nature 289: 751–58.


Эта страница в последний раз была отредактирована 16 сентября 2023 в 08:13.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).