Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Риманово многообразие

Из Википедии — свободной энциклопедии

Риманово многообразие, или риманово пространство (M, g), — это (вещественное) гладкое многообразие M, в котором каждое касательное пространство снабжено скалярным произведением g — метрическим тензором, меняющимся от точки к точке гладким образом. Другими словами, риманово многообразие — это дифференцируемое многообразие, в котором касательное пространство в каждой точке является конечномерным евклидовым пространством.

Это позволяет определить различные геометрические понятия на римановых многообразиях, такие как углы, длины кривых, площади (или объёмы), кривизну, градиент функции и дивергенции векторных полей.

Риманова метрика g — это положительно определённый симметрический тензор — метрический тензор; точнее — это гладкое ковариантное симметричное положительно определенное тензорное поле валентности (0,2).

Не стоит путать римановы многообразия с римановыми поверхностями — многообразиями, которые локально выглядят как склейки комплексных плоскостей.

Термин назван в честь немецкого математика Бернхарда Римана.

Обзор

Касательное расслоение гладкого многообразия M ставит в соответствие каждой точке M векторное пространство, называемое касательным, и на этом касательном пространстве можно ввести скалярное произведение. Если такой набор введённых скалярных произведений на касательном расслоении многообразия изменяется гладко от точки к точке, то с помощью таких произведений можно ввести метричность на всём многообразии. К примеру, гладкая кривая α(t): [0, 1] → M имеет касательный вектор α′(t0) в касательном пространстве TM(t0) в любой точке t0 ∈ (0, 1), и каждый такой вектор имеет длину ‖α′(t0)‖, где ‖·‖ обозначает норму, индуцированную скалярным произведением на TM(t0). Интеграл по этим длинам даёт длину всей кривой α:

Гладкость α(t) для t в [0, 1] гарантирует, что интеграл L(α) существует и длина кривой определена.

Во многих случаях для того чтобы перейти от линейно-алгебраической концепции к дифференциально геометрической, гладкость очень важна.

Каждое гладкое подмногообразие Rn имеет индуцированную метрику g: скалярное произведение на каждом касательном пространстве — это просто скалярное произведение на Rn. Имеет место и обратный факт: теорема Нэша о регулярных вложениях утверждает, что любое достаточно гладкое риманово многообразие может быть реализовано как подмногообразие с индуцированной метрикой в Rn достаточной большой размерности n.

Измерение длин и углов при помощи метрики

На римановом многообразии длина сегмента кривой, заданной параметрически (как вектор-функция параметра , меняющегося от до ), равна:

Угол между двумя векторами, и (в искривлённом пространстве векторы существуют в касательном пространстве в точке многообразия), определяется выражением:

Обобщения

Литература

Эта страница в последний раз была отредактирована 1 января 2024 в 08:35.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).