Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

НАДФ-зависимая декарбоксилирующая малатдегидрогеназа

Из Википедии — свободной энциклопедии

НАДФ-малик энзим
Идентификаторы
Шифр КФ 1.1.1.40
Номер CAS 9028-47-1
Базы ферментов
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
MetaCyc metabolic pathway
KEGG KEGG entry
PRIAM profile
PDB structures RCSB PDB PDBe PDBj PDBsum
Gene Ontology AmiGO • EGO
Поиск
PMC статьи
PubMed статьи
NCBI NCBI proteins
CAS 9028-47-1

НАДФ-зависимая декарбоксилирующая малатдегидрогеназа или НАДФ-малик-энзим (НАДФ-МЭ) представляет собой фермент, катализирующий химическую реакцию в присутствии двухвалентных ионов металлов:

(S)-малат + НАДФ+ -> пируват + CO2 + НАДФН

В качестве субстрата фермент использует (S)-малат и НАДФ+, при реакции образуются пируват, углекислый газ и НАДФН. В ходе реакции малат окисляется до пирувата и CO2, а НАДФ+ восстанавливается до НАДФН.

Фермент принадлежит к семейству оксидоредуктаз, а точнее, к ферментам, взаимодействующим с СН-OH группой донора, а в качестве акцептора использующих НАД+ или НАДФ+. Систематическое название этого фермента: (S)-малат: НАДФоксидоредуктаза (оксалоацетат-декарбоксилаза). Малатдегидрогеназа участвует в метаболизме пирувата и связывании углерода. НАДФ-малик энзим является одним из трех ферментов декарбоксилирования, участвующих в концентрировании неорганического углерода у С4 и CAM-растений. Также к этому классу относятся НАД-малик-энзим и ФЕП-карбоксикиназа.[1][2] Хотя часто одна из трех фотосинтетических декарбоксилаз преобладает, также может встречаться одновременное включение активности всех трех ферментов[3].

Структура фермента

Кристаллическая структура гомолога - человеческого малик-энзима; выделенные остатки участвуют в связывании субстрата и катализе. Сайт II содержит GLGDLG мотив, сайт V содержит другой мотив - GXGXXG, выделенный остаток аргинина взаимодействует с НАДФ+ и малатом, а обозначенный лизин, возможно, составляет основу катализа. Идентификатор PDB файла для изображения — 2aw5.

На основе кристаллографических данных гомологичного НАДФ-зависимого малик-энзима млекопитающих, была разработана 3D модель НАДФ-МЭ участвующего в C4 пути в растениях для выявления основных остатков, обеспечивающих связывание субстрата при катализе. Участок связывания НАДФ+ включает в себя два богатых глицином мотива — GXGXXG, гидрофобный желобок с участием минимум шести аминокислотных остатков и отрицательно заряженный остаток на конце ß-нити.[4][5] Первичная последовательность первого мотива, 240GLGDLG245, является консенсусным маркером для связывания фосфата, что подтверждает участие НАДФ+ в связывании, другие глицин-богатые мотивы принимают классическую укладку Россмана — также являющуюся типичным маркером для связывания НАДФ кофактора.[6] 

Полученные путем искусственного мутагенеза растения кукурузу с дефицитом функции НАДФ-МЭ подтвердждают предложенную молекулярно-биологическую модель. Замена валина глицином в любом месте мотива приводит к полной инактивации фермента. При этом спектральный анализ не показывает существенных отличий от формы дикого типа. Данные свидетельствуют о нарушениях в главном остатке, участвующем в связывании и катализе, а не во междоменном остатке, влияющем на конформационную стабильность. Важную роль играет остаток аргинина в положении 237, взаимодействуя с малатом и НАДФ+, он участвует в формировании электростатического взаимодействия с отрицательно заряженной карбоксильной группой кислоты и фосфатной группой нуклеотида. Не известно, играет ли данный остаток важную роль в субстрат-связывающих взаимодействиях или же определяет положение субстрата при катализе.[7] Предполагается, что остаток лизина в положении 255 выступает в качестве каталитического основания. Однако, необходимы дальнейшие исследования для точного установления его биохимической роли.

Биологическая функция

Если рассматривать этот класс ферментов в общем, то малик-энзимы найдены у многих эукариотических организмов (от грибов до млекопитающих). Показана локализация ферментов на субклеточном уровне. Малик энзим присутствует в цитозоле, митохондриях и хлоропластах. В частности, у С4 растений НАДФ-МЭ локализован в хлоропластах клеток-обкладок проводящего пучка.

В ходе C4 фотосинтеза — биохимического пути, возникшего для концентрирования CO2 в месте его фиксации РуБисКО — углекислый газ попадает в клетки мезофилла и образует оксалоацетат. Затем, происходит восстановление оксалоацетата до малата. Малат транспортируется в клетки обкладки, где подвергается декарбоксилированию при участии НАДФ-МЭ. Поскольку в одну клетку обкладки поступает малат от нескольких клеток мезофилла, то в результате происходит концентрирование углекислого газа в месте его фиксации РуБисКо.[8] 

Роль НАДФ-MЭ в коцентрировании углекислого газа подтверждается исследованием, проведенным на трансгенных растениях. Трансгенные растения с частичной потерей функции НАДФ-MЭ (40% активности НАДФ-ME от активности у дикого типа) наблюдалось значительное снижение уровня фиксации CO2 даже при высоком межклеточном содержании углекислого газа. Это говорит о важном значении НАДФ-MЭ в регуляции потока углерода, направленного к циклу Кальвина.

Регуляция активности фермента

Было показано, что экспрессия НАДФ-МЭ регулируется факторами абиотического стресса. Для CAM растений в условиях засухи характерно закрывание устьиц для избегания потери воды в результате испарения, которое приводит к голоданию по СО2. Этот процесс компенсируется за счёт того, что закрытие устьиц активирует трансляцию НАДФ-MЭ, что в свою очередь, во время коротких периодов поглощения СО2, увеличивает эффективность усвоения СО2,позволяя таким образом осуществлять фиксацию углерода.

В дополнение к длительному регулированию фермента посредством изменения экспрессии генов, существует кратковременное регулирование, которое может осуществляться за счёт аллостерических механизмов. Было показано, что для частичного ингибирования С4 НАДФ-МЭ субстратом, малат предположительно должен иметь два независимых сайта связывания: один в активном центре, а второй — аллостерический. Однако, ингибирующий эффект зависит от рН и проявляется лишь при рН = 7, но не 8. Наблюдение за изменением активности фермента в зависимости от изменения рН согласуются с гипотезой о том, что НАДФ-МЭ активен во время фотосинтеза: световые реакции приводят к повышению основности в строме хлоропласта — места локализации НАДФ-МЭ, что приводит к уменьшению ингибирующего влияния малата на НАДФ-МЭ, способствуя тем самым увеличению реакционной способности фермента. И наоборот, замедление световых реакций приводит к повышению кислотности среды в строме, вызывая ингибирование НАДФ-МЭ малатом. Необходимость регуляторного механизма объясняется тем, что для реакций цикла Кальвина требуются высокоэнергетические продукты световой фазы, НАДФН и АТФ, и,соответственно, процесс накопления СО2 без этих продуктов не является полезным.

Для этого белка можно использовать морфеиновую модель аллостерической регуляции.

Эволюция

НАДФ-малик энзим, как и все остальные С4 декарбоксилазы, не развился de novo с целью оказания помощи в фиксации СО2 РуБисКо. Наиболее вероятно, что НАДФ-МЭ был трансформирован из C3 вида в процессе фотосинтеза, но возможно также и более раннее происхождение из древнего цитозольного предка. В цитозоле, фермент существовал как ряд изоформ "домашнего хозяйства", предназначенных для выполнения различных функций, включая поддержание уровня малата во время гипоксии, удаление микроспор и защиту от патогенов. Относительно механизма эволюции, считается, что С4 функциональность была вызвана ошибкой внутри промоторных областей при дупликации гена, что привело к его гиперэкспрессии в кодирующей области в клетках обкладки, порождая неофункционализацию. Выбор в пользу сохранения функции фиксирования CО2, а также повышенной утилизации воды и азота при стрессовых условиях был обусловлен эволюционным давлением.

Установлено, что в ходе эволюции фермент приобрел несколько ключевых функциональных особенностей, в частности: увеличенную каталитическую активность, тетрамерную структуру и способность к pH-зависимому ингибированию собственным субстратом — малатом [9]. Сайт-специфический мутагенез, вместе с разрешеним кристаллической структуры C4-НАДФ-МЭ из сорго и кукурузы позволил установить ряд аминоксилотных остатков, обеспечивающих эти функции:

  • Q503, L544 и E339 увеличивают эффективность катализа;
  • E339 обеспечивает pH-зависимое ингибирование малатом;
  • F140 обеспечивает поддержание олигомерной структуры;
  • N-конец участвует в тетрамеризации [9].

Примечания

  1. Kanai, Ryuzi; Edwards, Gerald E. The Biochemistry of C4 Photosynthesis // C4 Plant Biology (неопр.) / Rowan F. Sage, Russell K. Monson. — Academic Press, 1999. — С. 49—87. — ISBN 978-0-08-052839-7.
  2. Christopher J.T., Holtum J. Patterns of Carbon Partitioning in Leaves of Crassulacean Acid Metabolism Species during Deacidification (англ.) // Plant Physiology : journal. — American Society of Plant Biologists, 1996. — September (vol. 112, no. 1). — P. 393—399. — doi:10.1104/pp.112.1.393. — PMID 12226397. — PMC 157961.
  3. Furumoto T., Hata S., Izui K. cDNA cloning and characterization of maize phosphoenolpyruvate carboxykinase, a bundle sheath cell-specific enzyme (англ.) // Plant Molecular Biology : journal. — 1999. — October (vol. 41, no. 3). — P. 301—311. — doi:10.1023/A:1006317120460. — PMID 10598098.
  4. Rossman, Michael G.; Liljas, Anders; Brändén, Carl-Ivar; Banaszak, Leonard J. Evolutionary and Structural Relationships among Dehydrogenases // The Enzymes (неопр.) / Boyer, Paul D.. — 1975. — Т. 11. — С. 61—102. — ISBN 978-0-12-122711-1. — doi:10.1016/S1874-6047(08)60210-3.
  5. Bellamacina C.R. The nicotinamide dinucleotide binding motif: a comparison of nucleotide binding proteins (англ.) // The FASEB Journal[англ.] : journal. — Federation of American Societies for Experimental Biology[англ.], 1996. — September (vol. 10, no. 11). — P. 1257—1269. — PMID 8836039. Архивировано 13 апреля 2020 года.
  6. Rothermel B.A., Nelson T. Primary structure of the maize NADP-dependent malic enzyme (англ.) // The Journal of Biological Chemistry : journal. — 1989. — November (vol. 264, no. 33). — P. 19587—19592. — PMID 2584183.
  7. Coleman, David E.; Rao, G. S. Jagannatha; Goldsmith, E. J.; Cook, Paul F.; Harris, Ben G. Crystal Structure of the Malic Enzyme from Ascaris suum Complexed with Nicotinamide Adenine Dinucleotide at 2.3 Å Resolution (англ.) // Biochemistry : journal. — 2002. — June (vol. 41, no. 22). — P. 6928—6938. — doi:10.1021/bi0255120. — PMID 12033925.
  8. Edwards G.E., Franceschi V.R., Voznesenskaya E.V. Single-cell C(4) photosynthesis versus the dual-cell (Kranz) paradigm (англ.) // Annual Review of Plant Biology : journal. — 2004. — Vol. 55. — P. 173—196. — doi:10.1146/annurev.arplant.55.031903.141725. — PMID 15377218.
  9. 1 2 Veronica G. Maurino, Martin J. Lercher, Maria F. Drincovich, Luitgard Nagel-Steger, Alejandro Buschiazzo. Molecular adaptations of NADP-malic enzyme for its function in C 4 photosynthesis in grasses (англ.) // Nature Plants. — 2019-06-24. — P. 1. — ISSN 2055-0278. — doi:10.1038/s41477-019-0451-7. Архивировано 20 июня 2022 года.
Эта страница в последний раз была отредактирована 17 октября 2023 в 17:26.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).