Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Схема реакций, используемых в классическом методе Цейзеля

Метод Цейзеля (реакция Цейзеля) — именной метод аналитической химии, способ количественного определения алкоксигрупп (RO—) в органических соединениях, основанный на реакции анализируемого вещества с иодоводородной кислотой. Обычно используется для определения алкоксигрупп в алкалоидах и сахарах. Автором первой методики был австрийский химик С. Цейзель (1854—1933)[1].

История

Первая работа С. Цейзеля, посвящённая определению метоксильных (CH3O—) групп данным методом, появилась в печати в 1885 году. Это стало следствием необходимости создания такой методики, которая бы позволила исследовать строение алкалоида колхицина. Этими исследованиями тогда занимался учёный А. Либенен. Впоследствии с помощью метода Цейзеля удалось также определить строение другого алколоида — папаверина. Однако возникла необходимость в определении отличных от метоксильной алкоксигрупп, поэтому Цейзель совместно с Герцигом (1853—1924), другим учёным, приспособил созданную им методику для определения этоксильных (C2H5O—) групп. Позднее Герциг вместе с Г. Мейером (1872—1944) установили, что метод Цейзеля также пригоден и для определения метилимидных и этилимидных групп, но с небольшими изменениями.

В дальнейшем метод Цейзеля начал применяться в анализе глицерина, благодаря чему получил более широкое распространение. Впоследствии методика данного анализа была упрощена и использована при анализе жиров[2].

Методика анализа

Схема классического аппарата Цейзеля

Классический метод

Обычно для применения классического метода Цейзеля используется аппарат Цейзеля. Его конструкция довольно проста: аппарат включает в себя перегонную колбу (1) с двумя трубками: одна предназначена для подачи углекислого газа (2), а вторая (3) — для соединения колбы с промывной склянкой (5). Вторая трубка также закрыта пробкой с верхней стороны (4). Она с помощью шлифа соединена с предохранительным сосудом (6), в котором во время дистилляции собирается иодоводородная кислота. Предохранительный сосуд в свою очередь соединён с приёмником — колбой Эрленмейера, предназначенной для конечного сбора алкилиодида[3].

Обычно классический метод применяется для анализа метоксигрупп. Навеску анализируемого вещества вначале нагревают с иодоводородной кислотой до температуры 100 °C в перегонной колбе. При этом метильный радикал, связанный с кислородом, отщепляется, образуется летучий метилиодид[2]:

Через аппарат одновременно пропускают углекислый газ, уносящий образующийся в ходе реакции метилиодид в поглотительный аппарат, который в свою очередь заполнен водной суспензией красного фосфора и погружён в сосуд, наполненный горячей водой. Данный аппарат предназначен для поглощения иода и иодоводорода с целью очистки метилиодида, который после этого этапа переходит в колбу со свежеприготовленным и профильтрованным раствором нитрата серебра в спирте, обычно в этаноле. Нитрат серебра реагирует с метилиодидом, образуя нерастворимый в воде иодид серебра, выпадающий в осадок[2]:

Осадок отфильтровывается через фильтр Шотта или фильтр Гуча, промывается дистиллированной водой до нейтральной реакции среды, затем промывается спиртом и сушится в термостате при температуре 105—110 °C до постоянной массы[4].

По количеству оставшегося иодида серебра гравиметрически определяют содержание алкоксигрупп в исходном соединении. Определение основано на том, что одной алкоксильной группе соответствует один моль осадка[1]. Содержание алкоксильных групп (в %) рассчитывается по формуле:

, где:

  •  — масса образовавшегося иодида серебра, г;
  •  — количество алкоксигрупп, эквивалентное 1 грамму иодида серебра, г; для метоксигруппы = 0,1325 г; для этоксигруппы = 0,1925 г;
  •  — навеска изначального вещества, мг[4].

Точность метода составляет ± 0,3—0,8 %[5].

Анализ производных окиси этилена

Метод Цейзеля применим к определению производных окиси этилена и продуктов её конденсации. Для этого навеску анализируемого производного окиси этилена массой 20—25 мг нагревают в ампуле с 5 мл 57%-ного раствора иодоводородной кислоты при температуре 130—140 °C на протяжении трёх часов:

Образующиеся летучие продукты отгоняют в токе углекислого газа. Сначала их очищают от иода в промывной склянке, которая содержит 0,5 г красного фосфора и 2—3 мл 5%-ного раствора сульфата кадмия. Затем этилиодид поглощается 10 мл спиртового раствора нитрата серебра; смесь нагревается до 80 °C. Образуется иодид серебра, избыток нитрата титруется по Фольгарду. В свою очередь этилен поглощается 15 мл раствора монохлорида иода:

При этом выделяется иод, который титруется 0,05 н. раствором тиосульфата натрия после прибавления 100 мл воды и 15 мл 10%-ного раствора иодида калия. По результатам титрования определяется строение анализируемого вещества[6].

Анализ эфиров целлюлозы

Обычно для этой цели применяется модификация метода Цейзеля, основанная на иодометрии[⇨]. При расщеплении эфиров целлюлозы иодоводородной кислотой протекает следующая реакция[7]:

После этого летучий алкилиодид отгоняется, очищается от примесей, окисляется до иодата, после чего титруется раствором тиосульфата натрия в присутствии иодида калия.

Обычно данная методика используется для анализа этилцеллюлозы. Содержание этоксильных групп (в %) в этилцеллюлозе рассчитывается по формуле:

, где:

  •  — объём 0,02 н. раствора тиосульфата натрия, который пошёл на титрование, мл;
  •  — поправочный коэффициент, предназначенный для приведения концентрации раствора тиосульфата натрия к точно 0,02 н.;
  •  — навеска изначального вещества, мг; 0,15021 — масса этоксильных групп, которая соответствует 1 мл точно 0,02 н. раствора тиосульфата натрия, мг[8].

Модификации

В настоящее время на практике чаще применяется более точный вариант метода Цейзеля — объёмный метод Фибека. Он заключается в реакции анализируемого вещества с кипящей иодоводородной кислотой, после чего образовавшийся алкилиодид окисляется раствором брома в ледяной уксусной кислоте в присутствии ацетата калия или натрия до иодата[7]:

Затем избыток брома удаляется с помощью муравьиной кислоты, а количество образовавшегося иодата определяют иодометрией: добавляют иодид калия, подкисляют раствор и оттитровывают иод тиосульфатом натрия. По количеству иодата рассчитывают содержание алкоксильных групп в исходном соединении. Определение основано на том, что одной алкоксильной группе соответствует один моль иодата[9][1]. Основное достоинство метода Фибека заключается в том, что определение числа алкоксильных групп с помощью него возможно и для содержащих серу соединений, в отличие от классического метода Цейзера, ведь в данном случае сера окисляется до серной кислоты, которая не мешает количественному определению иодата иодометрией[5].

Ещё один метод позволяет не только количественно определить алкоксигруппы в анализируемом веществе, но и узнать, какие и сколько алкоксигрупп содержится в одной его молекуле. Для этого исходное соединение нагревают с иодоводородной кислотой, а образовавшиеся в ходе реакции алкилиодиды перегоняются в трубку, предназначенную для их сожжения. Алкилиодиды сжигаются в токе воздуха в присутствии платинового катализатора, при этом образовавшиеся иод и углекислый газ поглощаются. Иод поглощается в серебряной гильзе, а диоксид углерода — аскаритом, после чего вещества взвешиваются. Масса иода позволяет определить содержание алкоксильных групп в исходном веществе, а молекулярное соотношение количеств углекислого газа и иода позволяет установить, какие именно алкоксильные группы содержатся в анализируемом соединении[1].

На практике часто применяется особая модификация, предназначенная лишь для определения метоксильных групп. Для этого образовавшийся в ходе реакции исходного вещества с иодоводородной кислотой метилиодид поглощается пиридином, образуя иодметилат пиридина, количество которого определяется титрованием соли водным раствором нитрата серебра в присутствии хромат-ионов CrO42-, что позволяет рассчитать количество метоксильных групп в анализируемом соединении[10][7].

Одна из модификаций метода Цейзеля используется для определения числа метиламиногрупп CH3NH в молекулах N-метиланилинов. Несмотря на то, что связь C—N более прочна, чем C—O, концентрированная иодоводородная кислота всё же способна количественно её расщеплять при температуре 150 °C, что успешно используется на практике[11]:

Трудности и особенности метода

Основной особенностью классического метода Цейзера является то, что метоксильные, этоксильные и иные алкоксильные группы дают одинаковый результат при измерениях, то есть образуют одинаковое количество метилиодида, а следовательно и иодида серебра. Поэтому перед использованием классического метода необходимо точно определить природу алкоксильных групп в анализируемом веществе и их соотношение между собой.

Классический метод Цейзера вполне применим для соединений, содержащих галогены и нитрогруппы, но совершенно неприменим для серосодержащих веществ, ведь сера в их случае будет выделять небольшую часть сероводорода, также подверженного испарению вместе с алкилиодидами и дающего осадок в виде сульфида серебра при реакции с его нитратом, таким образом значительно уменьшая точность измерений. Также осложнять анализ может наличие в соединении бутильного или другого высшего радикала, так как такое вещество расщепляется с трудом, а образуемые им иодиды имеют слишком высокую температуру кипения, поэтому в условиях метода не испаряются количественно[12][9].

Основная трудность метода Цейзеля заключается в том, что анализируемое вещество может быть нерастворимо в иодоводородной кислоте. В этом случае применяется смесь, содержащая не только данную кислоту, но и фенол с пропионовым альдегидом для лучшего растворения исходного соединения[1].

Ещё одна трудность проявляется в случае анализа вещества, содержащего метильную группу, связанную с азотом. Несмотря на то, что в большинстве случаев она отщепляется с трудом, всё же у некоторых соединений это вполне может произойти и существенно повлиять на результат вычислений, сделав метод Цейзера в данном случае неприменимым[12].

Стоит отметить, что метиловый спирт, этанол и некоторые высокомолекулярные спирты способны также давать положительную реакцию при использовании метода. Таким образом, если данные вещества содержатся в качестве примесей в анализируемом соединении, то они существенно уменьшают точность измерений[9].

Кроме всего прочего, метод Цейзеля неприменим к несимметричным простым эфирам, у которых оба заместителя — алифатические, а также к диарильным эфирам из-за устойчивости связи O—Ar по отношению к иодоводородной кислоте[13].

Применение

Метод Цейзеля имеет важное значение в аналитической химии ввиду существования большого количество разнообразных веществ природного происхождения, содержащих метоксильную группу, как например смолы, эфирные масла, алкалоиды, растительные красители, сахара и другие. Количественное определение алкоксигрупп имеет важное значение для установления структуры большей части данных соединений[12].

Метод Цейзеля широко применяется для оценки качества эфиров целлюлозы и низших спиртов, в особенности — этилцеллюлозы по степени её замещения, то есть этоксильному числу. Серьёзным ограничением этой области применения метода является высокая температура кипения алкилиодидов в случае наличия слишком массивных метоксигрупп в эфире целлюлозы, поэтому обычно подобному анализу подвергаются простые эфиры с низшими спиртами[7].

Примечания

Литература

  • Краткая химическая энциклопедия / Редкол.: Кнунянц И.Л. и др. — М.: Советская энциклопедия, 1967. — Т. 5. — 1184 с.
  • Химическая энциклопедия / Редкол.: Кнунянц И.Л. и др.. — М.: Советская энциклопедия, 1998. — Т. 5. — 783 с. — ISBN 5-85270-310-9.
  • Б. Бобранский. Количественный анализ органических соединений / пер. с пол. Н.Э. Гельман. — М.: Госхимиздат, 1961. — 270 с.
  • Т. Губен, Й. Вейль. Методы органической химии / пер. с нем. В.Л. Анохина, А.С. Забродиной, Е.И. Марголис и др.. — М.: Госхимиздат, 1963. — Т. 2. — 1032 с.
  • С.Т. Байбаева, Л.А. Миркинд, Л.П. Крылова и др. Методы анализа лакокрасочных материалов. — М.: Химия, 1974. — 472 с.
  • К. Райд. Курс физической органической химии / пер. с англ. В.А. Смита; под ред. И.П. Белецкой. — М.: Мир, 1972. — 575 с.
  • Н.Н. Ворожцов. Основы синтеза промежуточных продуктов и красителей. — 3-е изд.. — М.: Госхимиздат, 1950.
  • А. Вайсбергер. Установление структуры органических соединений физическими и химическими методами. Книга 1 / пер. с англ. Я.М. Варшавского и И.Ф. Луценко. — М.: Химия, 1967. — 532 с.
  • З.А. Роговин. Химия целлюлозы. — М.: Химия, 1972. — 520 с.
  • И. Губен. Методы органической химии / пер. с нем. П.Г. Сергеева, П.П. Шорыгина. — М.: Госхимтехиздат, 1934. — Т. 3.
  • П.В. Зимаков, О.Н. Дюмент. Окись этилена. — М.: Химия, 1967. — 320 с.
  • Торопцева А.М., Белогородская К.В., Бондаренко В.М. Лабораторный практикум по химии и технологии высокомолекулярных соединений / под ред. А.Ф. Николаева. — Л.: Химия, 1972. — 416 с.
Эта страница в последний раз была отредактирована 14 мая 2022 в 08:14.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).