Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Лемма Накаямы — важная техническая лемма в коммутативной алгебре и алгебраической геометрии, следствие правила Крамера. Названа именем Тадаси Накаямы.

Формулировки

Она имеет множество эквивалентных формулировок. Вот одна из них:

Пусть R — коммутативное кольцо с единицей 1, Iидеал в R, а Mконечнопорождённый модуль над кольцом R. Если IM = M, тогда существует a ∈ I такой, что для всякого m ∈ M am = m.

Доказательство леммы. Пусть — образующие модуля M. Так как M = IM, каждый из них представим в виде

, где — элементы идеала I. То есть (где - символ Кронекера) .

Из формулы Крамера для этой системы следует, что при всяком j

.

Так как представим в виде 1 − a, a из I, лемма доказана.

Следующее следствие из доказанного утверждения также известно как лемма Накаямы:

Следствие 1: Если в условиях леммы идеал I обладает свойством, что для каждого его элемента a элемент 1 − a обратим (например, это так, если I содержится в радикале Джекобсона), необходимо должно быть M = 0.

Доказательство. Существует элемент a идеала I, такой что aM = M, следовательно, (1 − a)M = 0, домножая слева на элемент, обратный к 1 − a, получаем, что M = 0.

Применение к модулям над локальными кольцами

Пусть Rлокальное кольцо, — максимальный идеал в R, Mконечнопорождённый R-модуль, и — гомоморфизм факторизации. Лемма Накаямы даёт удобное средство для перехода от модуля M над локальным кольцом R к фактормодулю , которое есть конечномерное векторное пространство над полем . Следующее утверждение также считается одной из форм леммы Накаямы, применительно к этому случаю:

Элементы порождают модуль M тогда и только тогда, когда их образы порождают фактормодуль .

Доказательство. Пусть S — подмодуль в M, порождённый элементами , Q = M/S — фактормодуль и — гомоморфизм факторизации. Так как порождают фактормодуль , это означает, что для всякого существует , такой что . Тогда . Поскольку сюръективно, это означает, что . По лемме Накаямы (точнее, согласно Следствию 1) Q=0, то есть S=M.

Имеется ещё один вариант леммы Накаямы для модулей над локальными кольцами:

Пусть — гомоморфизм конечнопорождённых R-модулей. Он индуцирует гомоморфизм фактормодулей . Эти гомоморфизмы сюръективны или не сюръективны одновременно.

На основе этой формы леммы Накаямы выводится следующая важная теорема:

Всякий (конечнопорождённый) проективный модуль над локальным кольцом свободен.

Литература

  • М. Атья, И. Макдональд. Введение в коммутативную алгебру. — М.: Мир, 1972. — 160 с.

См. также

Эта страница в последний раз была отредактирована 4 октября 2020 в 00:28.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).