Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Кватернионный анализ

Из Википедии — свободной энциклопедии

Кватернионный анализ — это раздел математики, изучающий регулярные кватернионнозначные функции кватернионного переменного. Из-за некоммутативности алгебры кватернионов существуют различные неравносильные подходы к определению регулярных кватернионных функций. В данной статье будет рассматриваться, в основном, подход Фютера[1].

Определение регулярной функции

Рассмотрим оператор

Функция кватернионного переменного называется регулярной, если


Гармонические функции

Пусть , тогда и . Несложно проверить, что оператор имеет вид

и совпадает с оператором Лапласа в . Таким образом, все компоненты регулярной кватернионной функции являются гармоническими функциями в . Обратно, можно показать, что для любой гармонической функции существует регулярная кватернионная функция такая, что . Из свойств гармонических функций сразу следуют многие свойства регулярных кватернионных функций, в частности, принцип максимума.

Некоторые применения

Кватернионы активно применяются для расчёта трёхмерной графики в компьютерных играх

Дифференцирование отображений

Пусть  — функция, определённая на теле кватернионов. Мы можем определить понятие левой производной в точке как такое число, что

где  — бесконечно малая от , то есть

.

Множество функций, которые имеют левую производную, ограничено. Например, такие функции, как

не имеют левой производной.

Рассмотрим приращение этих функций более внимательно.

Нетрудно убедиться, что выражения

и

являются линейными функциями кватерниона . Это наблюдение является основанием для следующего определения[2].

Непрерывное отображение

называется дифференцируемым на множестве , если в каждой точке изменение отображения может быть представлено в виде

где

линейное отображение алгебры кватернионов и такое непрерывное отображение, что

Линейное отображение

называется производной отображения .

Производная может быть представлена в виде[3]

Соответственно дифференциал отображения имеет вид

Здесь предполагается суммирование по индексу . Число слагаемых зависит от выбора функции . Выражения

называются компонентами производной.

Производная удовлетворяет равенствам

Если , то производная имеет вид

Если , то производная имеет вид

и компоненты производной имеют вид

Если , то производная имеет вид

и компоненты производной имеют вид

Примечания

  1. Fueter, R. Über die analytische Darstellung der regulären Funktionen einer Quaternionenvariablen // Commentarii Mathematici Helvetici. — №1. — Birkhäuser Basel, 1936. — P. 371—378.
  2. Aleks Kleyn, eprint arXiv:1601.03259 Архивная копия от 25 января 2018 на Wayback Machine Introduction into Calculus over Banach algebra, 2016
  3. Выражение не является дробью и должно восприниматься как единый символ. Данное обозначение предложено для совместимости с обозначением производной. Значение выражения при заданном является кватернионом.

Литература

См. также

Эта страница в последний раз была отредактирована 6 апреля 2022 в 06:46.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).