Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

 

Инозитолтрифосфат или инозитол-1,4,5-трифосфат, сокращенно InsP 3 или Ins3P или IP3, представляет собой сигнальную молекулу инозитолфосфата. Он производится путем гидролиза фосфатидилинозитол-4,5-бисфосфата (PIP2), фосфолипида, расположенного в плазматической мембране, фосфолипазой C (PLC). Вместе с диацилглицерином (DAG) IP3 представляет собой молекулу вторичного мессенджера, используемую для передачи сигналов в биологических клетках. Пока DAG остается внутри мембраны, IP3 растворим и диффундирует через клетку, где связывается со своим рецептором, который представляет собой кальциевый канал, расположенный в эндоплазматическом ретикулуме. Когда IP3 связывается с рецептором, кальций высвобождается в цитозоль, тем самым активируя различные внутриклеточные сигналы, регулируемые кальцием.

Характеристики

Химическая формула и молекулярная масса

IP3 представляет собой органическую молекулу с молекулярной массой 420,10 г/моль. Его эмпирическая формула — C6H15O15P3. Он состоит из инозитолового кольца с тремя фосфатными группами, связанными в положениях углерода 1, 4 и 5, и тремя гидроксильными группами, связанными в положениях 2, 3 и 6[1].

Химические свойства

Стыковка IP3 с его рецептором, который называется рецептором инозитолтрифосфата (InsP3R), впервые была изучена с помощью делеционного мутагенеза в начале 1990-х годов.[2] Исследования были сосредоточены на N-концевой стороне рецептора IP3. В 1997 году исследователи локализовали область рецептора IP3, участвующую в связывании IP3, между аминокислотными остатками 226 и 578 в 1997 году. Учитывая, что IP3 представляет собой отрицательно заряженную молекулу, предполагалось, что в этом участвуют положительно заряженные аминокислоты, такие как аргинин и лизин. Было обнаружено, что два остатка аргинина в положениях 265 и 511 и один остаток лизина в положении 508 являются ключевыми в докинге IP3. Используя модифицированную форму IP3, было обнаружено, что все три фосфатные группы взаимодействуют с рецептором, но не одинаково. Фосфаты в 4-м и 5-м положениях взаимодействуют более интенсивно, чем фосфат в 1-м положении и гидроксильная группа в 6-м положении инозитольного кольца[3].

Связывание с рецептором

Анион IP3 с атомами кислорода (красным) и атомами водорода, участвующими в стыковке с InsP3R (темно-синим), обозначен.

Фосфатные группы могут существовать в трех различных формах в зависимости от pH раствора. Атомы фосфора могут связывать три атома кислорода одинарными связями и четвёртый атом кислорода с помощью двойной/дативной связи. pH раствора и, следовательно, форма фосфатной группы определяют её способность связываться с другими молекулами. Связывание фосфатных групп с инозитольным кольцом осуществляется путем связывания эфиров фосфора (см. Фосфорные кислоты и фосфаты). Эта связь включает объединение гидроксильной группы инозитолового кольца и свободной фосфатной группы посредством реакции дегидратации. Учитывая, что среднее физиологическое значение pH составляет примерно 7,4, основной формой фосфатных групп, связанных с инозитоловым кольцом in vivo, является PO42- . Это придает IP3 чистый отрицательный заряд, что важно для возможности его присоединения к рецептору посредством связывания фосфатных групп с положительно заряженными остатками на рецепторе. IP3 имеет три донора водородных связей в виде трех гидроксильных групп. Гидроксильная группа на 6-м атоме углерода в инозитольном кольце также участвует в стыковке IP3[4].

Открытие

Открытие того, что гормон может влиять на метаболизм фосфоинозитидов, было сделано Мейбл Р. Хокин (1924—2003) и её мужем Лоуэллом Э. Хокином в 1953 году, когда они обнаружили, что радиоактивный фосфат 32Р включается в фосфатидилинозитол срезов поджелудочной железы при стимуляции ацетилхолин. До этого считалось, что фосфолипиды являются инертными структурами, используемыми клетками только в качестве строительных блоков для строительства плазматической мембраны[5].

В течение следующих 20 лет мало что было обнаружено о важности метаболизма PIP2 с точки зрения передачи клеточных сигналов, пока в середине 1970-х годов Роберт Х. Мичелл не выдвинул гипотезу о связи между катаболизмом PIP2 и увеличением внутриклеточного кальция (Ca2+) уровни. Он предположил, что активируемый рецептором гидролиз PIP 2 приводит к образованию молекулы, которая вызывает увеличение внутриклеточной мобилизации кальция[6]. Эта идея была тщательно исследована Мичеллом и его коллегами, которые в 1981 году смогли показать, что PIP2 гидролизуется до DAG и IP3 неизвестной тогда фосфодиэстеразой. В 1984 году было обнаружено, что IP3 действует как вторичный мессенджер, способный перемещаться через цитоплазму в эндоплазматический ретикулум, где он стимулирует высвобождение кальция в цитоплазму[7].

Дальнейшие исследования предоставили ценную информацию о пути IP3, например, открытие в 1986 году того, что одна из многих ролей кальция, высвобождаемого IP3, заключается в работе с DAG для активации протеинкиназы C (PKC)[8]. В 1989 году было обнаружено, что фосфолипаза C (PLC) является фосфодиэстеразой, ответственной за гидролиз PIP2 до DAG и IP3[9]. Сегодня сигнальный путь IP3 хорошо изучен и известен как важный в регуляции множества кальций-зависимых клеточных сигнальных путей.

Сигнальный путь

PLC-расщепление PIP2 до IP3 и DAG инициирует внутриклеточное высвобождение кальция и активацию PKC.

Увеличение внутриклеточной концентрации Ca2+ часто является результатом активации IP3 . Когда лиганд связывается с рецептором, связанным с G-белком (GPCR), который связан с гетеротримерным G-белком Gq, α-субъединица Gq может связываться с изозимом PLC PLC-β и индуцировать активность, что приводит к расщеплению PIP2 в IP3 и DAG[10].

Если в активации этого пути участвует рецепторная тирозинкиназа (RTK), изофермент PLC-γ имеет остатки тирозина, которые могут фосфорилироваться при активации RTK, и это активирует PLC-γ и позволяет ему расщеплять PIP2 до DAG и IP3. Это происходит в клетках, которые способны реагировать на факторы роста, такие как инсулин, поскольку факторы роста являются лигандами, ответственными за активацию RTK[11].

IP3 (также сокращенно Ins(1,4,5)P3) представляет собой растворимую молекулу и способен диффундировать через цитоплазму в эндоплазматический ретикулум или саркоплазматический ретикулум в случае мышечных клеток, как только он был продуцирован под действием PLC. Попав в эндоплазматический ретикулум, IP3 способен связываться с рецептором Ins(1,4,5)P3 — Ins(1,4,5)P3R, который представляет собой лиганд-управляемый Ca2+ — канал, который находится на поверхностb эндоплазматического ретикулума. Связывание IP3 (в данном случае лиганда) с Ins(1,4,5)P3R запускает открытие канала Ca2+ и, таким образом, высвобождение Ca2+ в цитоплазму[11]. В клетках сердечной мышцы это увеличение Ca2+ активирует канал саркоплазматического ретикулума, управляемый рианодиновым рецептором, что приводит к дальнейшему увеличению Ca2+ посредством процесса, известного как кальций-индуцированное высвобождение кальция. IP3 может также активировать каналы Ca2+ на клеточной мембране косвенно, увеличивая внутриклеточную концентрацию Ca2+[10].

Функция

Человек

Основные функции IP3 заключаются в мобилизации Ca2+ из запасающих органелл и регулировании пролиферации клеток и других клеточных реакциях, требующих свободного кальция. Например, в гладкомышечных клетках увеличение концентрации цитоплазматического Са2+ приводит к сокращению мышечной клетки[12].

В нервной системе IP3 служит вторичным мессенджером, при этом мозжечок содержит самую высокую концентрацию рецепторов IP3[13]. Имеются данные о том, что рецепторы IP3 играют важную роль в индукции пластичности клеток Пуркинье мозжечка[14].

Яйца морских ежей

Медленный блок полиспермии у морского ежа опосредуется системой вторичного мессенджера PIP2. Активация связывающих рецепторов активирует PLC, который расщепляет PIP2 в плазматической мембране яйцеклетки, высвобождая IP3 в цитоплазму яйцеклетки. IP3 диффундирует в эдоплазматический ретикулум, где открывает каналы Ca2+.

Нарушения обмена

Болезнь Хантингтона

Болезнь Хантингтона возникает, когда цитозольный белок Хантингтин (Htt) имеет дополнительные 35 остатков глутамина, добавленных к его аминоконцевой области. Эта модифицированная форма Htt называется Httexp . Httexp делает рецепторы IP3 типа 1 более чувствительными к IP3, что приводит к высвобождению слишком большого количества Ca2+ из эндоплазматического ретикулума. Высвобождение Ca2+ вызывает увеличение цитозольной и митохондриальной концентрации Ca2+. Считается, что это увеличение Ca2+ является причиной ГАМКергической деградации MSN[15].

Болезнь Альцгеймера

Болезнь Альцгеймера включает в себя прогрессирующую дегенерацию мозга, серьёзно влияющую на умственные способности[16]. С тех пор как в 1994 году была предложена Ca2+-гипотеза болезни Альцгеймера, несколько исследований показали, что нарушения передачи сигналов Ca2+ являются основной причиной болезни Альцгеймера. Семейная болезнь Альцгеймера тесно связана с мутациями в генах пресенилина 1 (PS1), пресенилина 2 (PS2) и белка-предшественника амилоида (APP). Было обнаружено, что все мутированные формы этих генов, наблюдаемые на сегодняшний день, вызывают аномальную передачу сигналов Ca2+ в эндоплазматический ретикулум. Было показано, что мутации в PS1 увеличивают IP3 -опосредованное высвобождение Ca2+ из эндоплазматического ретикулума на нескольких моделях животных. Блокаторы кальциевых каналов с некоторым успехом использовались для лечения болезни Альцгеймера, а использование лития для уменьшения обмена IP3 также было предложено в качестве возможного метода лечения[17][18].

См. также

Аденофостин

Инозитол

Рекомендации

  1. PubChem 439456
  2. Mignery, GA (1990). "The ligand binding site and transduction mechanism in the inositol-1,4,5-triphosphate receptor". The EMBO Journal. 9 (12): 3893—8. doi:10.1002/j.1460-2075.1990.tb07609.x. PMID 2174351.
  3. Taylor, Colin W. (2004). "IP3 receptors: The search for structure" (PDF). Trends in Biochemical Sciences. 29 (4): 210—9. doi:10.1016/j.tibs.2004.02.010. PMID 15082315. Архивировано из оригинала (PDF) 8 августа 2017. Дата обращения: 13 декабря 2023.
  4. Bosanac, Ivan (2004). "Structural insights into the regulatory mechanism of IP3 receptor". Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 1742 (1—3): 89—102. doi:10.1016/j.bbamcr.2004.09.016. PMID 15590059.
  5. Hokin, LE (1953). "Enzyme secretion and the incorporation of 32P into phosphlipids of pancreas slices". Journal of Biological Chemistry. 203 (2): 967—977. doi:10.1016/S0021-9258(19)52367-5. PMID 13084667.
  6. Michell, RH (1975). "Inositol phospholipids and cell surface receptor function". Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes. 415 (1): 81—147. doi:10.1016/0304-4157(75)90017-9. PMID 164246.
  7. Michell, RH (1981). "The stimulation of inositol lipid metabolism that accompanies calcium mobilization in stimulated cells: defined characteristics and unanswered questions". Philosophical Transactions of the Royal Society B. 296 (1080): 123—137. Bibcode:1981RSPTB.296..123M. doi:10.1098/rstb.1981.0177. PMID 6121338.
  8. Nishizuka, Y (1986). "Studies and perspectives of protein kinase C". Science. 233 (4761): 305—312. Bibcode:1986Sci...233..305N. doi:10.1126/science.3014651. PMID 3014651.
  9. Rhee, SG (1989). "Studies of inositol phospholipid-specific phospholipase C". Science. 244 (4904): 546—550. Bibcode:1989Sci...244..546R. doi:10.1126/science.2541501. PMID 2541501. Архивировано 1 июня 2023. Дата обращения: 13 декабря 2023.
  10. 1 2 Biaggioni I., Robertson D. (2011). Chapter 9. Adrenoceptor Agonists & Sympathomimetic Drugs. In: B.G. Katzung, S.B. Masters, A.J. Trevor (Eds), Basic & Clinical Pharmacology, 11e. Retrieved October 11, 2011 from AccessMedicine | Case Study. Дата обращения: 30 ноября 2011. Архивировано из оригинала 30 сентября 2011 года..
  11. 1 2 Barrett KE, Barman SM, Boitano S, Brooks H. Chapter 2. Overview of Cellular Physiology in Medical Physiology. In: K.E. Barrett, S.M. Barman, S. Boitano, H. Brooks (Eds), Ganong’s Review of Medical Physiology, 23e. AccessMedicine | Objectives. Дата обращения: 30 ноября 2011. Архивировано из оригинала 14 июня 2012 года..
  12. Somlyo, AP (1994). "Signal transduction and regulation in smooth muscle". Nature. 372 (6503): 231—6. Bibcode:1994Natur.372..231S. doi:10.1038/372231a0. PMID 7969467.
  13. Worley, PF (1989). "Inositol 1,4,5-trisphosphate receptor binding: autoradiographic localization in rat brain". J. Neurosci. 9 (1): 339—46. doi:10.1523/JNEUROSCI.09-01-00339.1989. PMID 2536419.
  14. Sarkisov, DV (2008). "Order-dependent coincidence detection in cerebellar Purkinje neurons at the inositol trisphosphate receptor". J. Neurosci. 28 (1): 133—42. doi:10.1523/JNEUROSCI.1729-07.2008. PMID 18171931.
  15. Bezprozvanny, I. (2004). "Deranged neuronal calcium signaling and Huntington disease". Biochemical and Biophysical Research Communications. 322 (4): 1310—1317. doi:10.1016/j.bbrc.2004.08.035. PMID 15336977.
  16. Alzheimer’s Society of Canada. (2009). Alzheimer’s Disease:What is Alzheimer’s? Retrieved from: http://www.alzheimer.ca/english/disease/whatisit-intro.htm Архивировано {{{2}}}.
  17. Stutzmann, G. E. (2005). "Calcium Dysregulation, IP3 Signaling, and Alzheimer's Disease". Neuroscientist. 11 (2): 110—115. doi:10.1177/1073858404270899. PMID 15746379.
  18. Berridge, M. J. (2016). "The Inositol Trisphosphate/Calcium Signaling Pathway in Health and Disease". Physiological Reviews. 96 (4): 1261—1296. doi:10.1152/physrev.00006.2016. PMID 27512009.

Ссылки

Эта страница в последний раз была отредактирована 4 мая 2024 в 00:25.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).