Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Инжекция — физическое явление, наблюдаемое в полупроводниковых гомо- и гетеропереходах, при котором при пропускании электрического тока в прямом направлении через p-n-переход в прилежащих к переходу областях создаются высокие концентрации неравновесных («инжектированных») носителей заряда. Явление инжекции является следствием уменьшения высоты потенциального барьера в p-n-переходе при подаче на него прямого напряжения.

Явление инжекции лежит в основе работы многих полупроводниковых приборов: диодов, биполярных транзисторов, тиристоров, инжекционно-пролётных диодов, светодиодов и полупроводниковых инжекционных лазеров.

Особенностью явления инжекции в гетеропереходах является возможность наблюдения явления суперинжекции, при котором концентрация инжектированных носителей может превышать концентрацию легирующих примесей в области, из которой идет инжекция. Это явление принципиально важно для работы полупроводниковых инжекционных лазеров.

Инжекция в p-n-переходе

При достаточно высокой температуре, когда примесные атомы практически полностью ионизованы, в n-области, легированной донорами с концентрацией Nd, концентрация основных носителей (электронов) равна nn ≈ Nd. Так как в невырожденном полупроводнике концентрации электронов n и дырок p связаны[1] соотношением n·p =ni2, где niсобственная концентрация носителей заряда, концентрация неосновных носителей (дырок) в n-области равна  pn=ni2/ nn, причём nnnipn.

Распределение концентраций электронов и дырок в p-n-переходе при нулевом смещении U=0 (непрерывная кривая) и при положительном смещении U>0 (пунктирная кривая).

В области p-типа, легированной акцепторами с концентрацией Na, концентрация дырок равна pp ≈ Na, в то же время концентрация электронов np=ni2/ pp, при этом выполняется соотношение ppninp.

Распределение концентраций электронов и дырок в p-n-переходе в отсутствие тока показано на рисунке справа. Как видно, концентрация дырок в дырочной области pp (основные носители) постоянна и велика. В переходной области она уменьшается на много порядков и принимает малое значение pn в n-области (неосновные носители). Аналогично, концентрация электронов изменяется от большого значения nn в n-области до малой величины np в p-области.

В состоянии равновесия (при нулевом напряжении смещения) высота потенциального барьера Vbi устанавливается такой, что потоки носителей заряда, протекающие через p-n-переход в обоих направлениях, точно скомпенсированы. Например, поток электронов, движущихся из n- в p-область за счет диффузии и преодолевающих потенциальный барьер, равен потоку неосновных электронов, которые генерируются в p-области и, подходя к p-n-переходу, затягиваются электрическим полем в n-область. То же справедливо и для дырок.

Если теперь на p-n-переход подать напряжение смещения, то равновесие нарушится, потоки окажутся нескомпенсированными и через переход потечёт электрический ток. При этом значение тока будет зависеть от знака приложенного напряжения.

Рассмотрим, что будет происходить с диффузионным и дрейфовым токами, если к p-n-переходу приложить положительное внешнее смещение. При U>0  дырки из p-области устремятся в n-область, где они станут неосновными носителями. Так как pp > pn, эти дырки будут рекомбинировать с электронами. Однако вследствие конечности времени жизни дырок τp, рекомбинация произойдёт не сразу, поэтому в некоторой области за пределами перехода концентрация дырок будет оставаться больше pn. Одновременно с этим увеличится и концентрация электронов в n-области, так как дополнительные электроны войдут из электрода для компенсации объёмного заряда пришедших дырок.  Аналогичным образом электроны будут переходить в p-область, становясь там неосновными носителями, и постепенно рекомбинировать  с дырками. Поэтому и слева от перехода концентрация электронов увеличится, а также увеличится и концентрация дырок, которые войдут из левого электрода для компенсации объёмного заряда электронов.

Таким образом, инжекция заключается в увеличении концентрации носителей обоих типов по обе стороны от перехода, то есть в возникновении квазинейтральных областей повышенной проводимости[1].

Энциклопедичный YouTube

  • 1/3
    Просмотров:
    144 102
    195 729
    8 505
  • Закон Бернулли
  • 🌑 ВОДЯНОЙ НАСОС качает воду без электричества! ОЧЕНЬ КРУТАЯ ИДЕЯ WATER PUMP ИГОРЬ БЕЛЕЦКИЙ
  • NICA — Вселенная в лаборатории

Субтитры

Примечания

  1. 1 2 Бонч-Бруевич В. Л., Калашников С. Г. Физика полупроводников. — Москва: Наука, 1977. — С. 174, 259.

Литература

Эта страница в последний раз была отредактирована 11 марта 2024 в 05:13.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).