Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Движение (математика)

Из Википедии — свободной энциклопедии

Движе́ние (или наложе́ние[1]) — преобразование метрического пространства, сохраняющее расстояние между соответствующими точками, то есть если и  — образы точек и , то . Иначе говоря, движение — это изометрия пространства в себя.

Несмотря на то, что движение определяется на всех метрических пространствах, этот термин более распространён в евклидовой геометрии и смежных областях. В метрической геометрии (в частности, в римановой геометрии) чаще говорят: изометрия пространства в себя. В общем случае метрического пространства (например, для неплоского риманова многообразия) движения могут существовать далеко не всегда.

Иногда под движением понимают преобразование евклидова пространства, сохраняющее ориентацию. В этом случае, осевая симметрия плоскости движением не считается, а поворот и параллельный перенос считаются движением. Аналогично для общих метрических пространств движением считается элемент группы изометрий из связной компоненты тождественного отображения.

В евклидовом (или псевдоевклидовом) пространстве движение автоматически сохраняет также углы, так что сохраняются все скалярные произведения.

Далее в этой статье рассматриваются изометрии только евклидова точечного пространства.

Собственные и несобственные движения

Пусть  — движение евклидова точечного пространства а  — пространство свободных векторов для пространства . Линейный оператор ассоциированный с аффинным преобразованием является ортогональным оператором, и поэтому его определитель может быть равен либо (собственный ортогональный оператор), либо (несобственный ортогональный оператор). В соответствии с этим и движения подразделяются на два класса: собственные (если ) и несобственные (если )[2].

Собственные движения сохраняют ориентацию пространства несобственные — заменяют её на противоположную[3]. Иногда собственные и несобственные движения называют соответственно перемещениями и антиперемещениями[4].

Всякое движение n-мерного евклидова точечного пространства может быть однозначно определено указанием ортонормированного репера в который при данном движении переходит заранее выбранный в пространстве ортонормированный репер При этом в случае собственного движения новый репер ориентирован так же, как и исходный, а в случае несобственного движения новый репер ориентирован противоположным образом. Движения всегда сохраняют расстояния между точками пространства (т. e. являются изометриями), причём никаких других изометрий, кроме собственных и несобственных движений, не существует[5].

В механике в понятие «движение» вкладывается другой смысл; в частности, оно всегда рассматривается как непрерывный процесс, происходящий в течение некоторого промежутка времени (см. механическое движение). Если, следуя П. С. Александрову, называть непрерывным движением такое движение пространства которое непрерывно зависит от параметра (при в механике это соответствует движению абсолютно твёрдого тела), то ортонормированный репер может быть получен непрерывным движением из ортонормированного репера тогда и только тогда, когда оба репера ориентированы одинаково[6].

Частные виды изометрий

На прямой

Любое движение прямой есть либо параллельный перенос (сводящийся к смещению всех точек прямой на один и тот же вектор, лежащий на этой же прямой), либо отражение относительно некоторой точки, взятой на данной прямой. В первом случае движение является собственным, во втором — несобственным[7].

На плоскости

Любое движение плоскости относится к одному из следующих типов[3]:

Движения первых двух типов — собственные, последних двух — несобственные[8].

В трёхмерном пространстве

Любое движение трёхмерного пространства относится к одному из следующих типов[3]:

  • Параллельный перенос;
  • Поворот;
  • Винтовое движение — суперпозиция поворота относительно некоторой прямой и переноса на вектор, параллельный этой прямой;
  • Зеркальная симметрия (отражение) относительно плоскости;
  • Скользящая симметрия — суперпозиция переноса на вектор, параллельный плоскости, и симметрии относительно этой плоскости;
  • Зеркальный поворот — суперпозиция поворота вокруг некоторой прямой и отражения относительно плоскости, перпендикулярной оси поворота.

Движения первых трёх типов исчерпывают класс собственных движений трёхмерного пространства (теореме Шаля), а движения последних трёх типов являются несобственными[8].

В n-мерном пространстве

Суперпозиция двух отражений относительно непараллельных осей даёт поворот
Суперпозиция двух отражений относительно параллельных осей даёт параллельный перенос

В -мерном пространстве движения сводятся к ортогональным преобразованиям, параллельным переносам и суперпозициям тех и других.

В свою очередь, ортогональные преобразования могут быть представлены как суперпозиции (собственных) вращений и зеркальных отражений (т. e. симметрий относительно гиперплоскостей).

Движения как суперпозиции симметрий

Любую изометрию в -мерном евклидовом пространстве можно представить в виде суперпозиции не более чем n+1 зеркальных отражений[9].

Так, параллельный перенос и поворот — суперпозиции двух отражений, скользящее отражение и зеркальный поворот — трёх, винтовое движение — четырёх.

Общие свойства изометрий

Примечания

  1. Учебник Киселёва и учебник Л. С. Атанасянa с соавторами.
  2. Кострикин и Манин, 1986, с. 201—204.
  3. 1 2 3 Егоров И. П. . Движение // Математическая энциклопедия. Т. 2 / Гл. ред. И. М. Виноградов. — М.: Советская энциклопедия, 1979. Архивировано 20 ноября 2012 года. — 1104 стб. — Стб. 20—22.
  4. 1 2 Берже, 1984, с. 249.
  5. Александров, 1968, с. 259—262.
  6. Александров, 1968, с. 210, 214.
  7. Александров, 1968, с. 284.
  8. 1 2 Кострикин и Манин, 1986, с. 204.
  9. Берже, 1984, с. 255.
  10. Александров, 1968, с. 267.
  11. Кострикин и Манин, 1986, с. 202.

Литература

Эта страница в последний раз была отредактирована 11 августа 2023 в 11:03.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).