Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Гравитация с массивным гравитоном

Из Википедии — свободной энциклопедии

Гравитация с массивным гравитоном — название класса теорий гравитации, в которых частица-переносчик взаимодействия (гравитон) предполагается массивной, примером является релятивистская теория гравитации. Характерная особенность таких теорий — проблема разрыва ван Дама — Вельтмана — Захарова (англ. vDVZ (van Dam-Veltman-Zakharov) discontinuity), то есть наличие конечной разности в предсказаниях предела такой теории при массе гравитона, стремящейся к нулю, и теории с безмассовой частицей с самого начала.

Энциклопедичный YouTube

  • 1/5
    Просмотров:
    56 193
    82 249
    440 586
    3 995
    64 628
  • Как увидеть гравитацию
  • Гравитация
  • Сергей Попов: "Астрофизические итоги 2018 года"
  • Лутовинов Александр Анатольевич «Космические фейерверки нейтронных звезд».
  • Чёрные дыры

Субтитры

Проблемы массивного гравитона в линейном приближении

Общую теорию относительности в линеаризованном пределе можно сформулировать как теорию безмассового поля спина 2 на пространстве Минковского, описываемого симметричным тензором . Естественным обобщением такой теории является введение в лагранжиан массового члена различного вида. Чаще всего такой член выбирают в виде Паули — Фирца , что как можно показать, наиболее естественно, однако возможен и другой выбор (типа ). При этом уравнения движения для гравитационного поля приобретают вид

где индексы поднимаются и опускаются метрикой Минковского , оператор д'Аламбера, — гравитационная постоянная Ньютона, тензор энергии-импульса источников поля. Дивергенция этих уравнений в силу законов сохранения должна быть равна 0, что даёт и после подстановки в уравнения и взятия следа

Поэтому имеется две различные возможности: либо — тогда след тензора не является динамической переменной теории, а всецело определяется следом источника , либо и — динамическая переменная. Первый случай даёт обоснование массовому члену Паули — Фирца, но приводит к следующему выражению для гравитационного поля:

где введено краткое обозначение для интегрального оператора, обратного дифференциальному , в отличие от

в линеаризованной общей теории относительности. Таким образом, получаемая теория имеет две проблемы при , выражающиеся в неправильной величине гравитационных эффектов от первого слагаемого (1/3 вместо 1/2), а также в стремлении второго из них к бесконечности. Первый отмеченный эффект и носит название разрыва ван Дама — Вельтмана — Захарова по именам первооткрывателей[2][3]. В частности, из-за этого отклонение света в теории составляет 3/4 величины общей теории относительности, а прецессия перигелия — 2/3[2].

Второй подход приводит к появлению новой динамической степени свободы, которая восстанавливает предсказания до нужного уровня, так как общее решение имеет вид

где , и при первый и второй член дают 1/3 + 1/6 = 1/2. Но при взаимодействии с материей второй член участвует со знаком, противоположным первому, так что он представляет собой скалярное поле отрицательной энергии (англ. ghostlike field), что вызывает нестабильность теории по отношению к перекачке в него энергии.

Вообще корень проблемы лежит в разложении массивного поля спина 2 по спиральностям и их взаимодействии с веществом. При стремлении массы поля к нулю компоненты спиральности отделяются от остальных, образуя независимое свободное безмассовое поле Максвелла, но компоненты спиральности и остаются зацеплёнными и взаимодействуют с веществом совместно[4]. Ситуацию можно решить добавлением ещё одного скалярного поля, но для восстановления корректного предела оно должно иметь отрицательную энергию, что опять-таки недопустимо в стабильной теории поля.

Более подробный разбор, не ограничивающийся линеаризованным приближением, проведён в работах [4][1].

Примечания

  1. 1 2 Thibault Damour, Ian I. Kogan, Antonios Papazoglou. Spherically symmetric spacetimes in massive gravity (англ.) // Physical Review D : journal. — 2003. — Vol. 67. — P. 064009. — doi:10.1103/PhysRevD.67.064009. Архивировано 20 января 2022 года.
  2. 1 2 H. van Dam, M. Veltman. Massive and mass-less Yang-Mills and gravitational fields (англ.) // Nuclear Physics B : journal. — 1970. — Vol. 22, no. 2. — P. 397—411. — doi:10.1016/0550-3213(70)90416-5. Архивировано 1 июня 2013 года. Архивированная копия. Дата обращения: 3 сентября 2009. Архивировано 1 июня 2013 года..
  3. В. И. Захаров. Линеаризованная теория гравитации и масса гравитона // Письма в ЖЭТФ : журнал. — 1970. — Т. 12, № 9. — С. 447—449.
  4. 1 2 David G. Boulware, S. Deser. Can Gravitation Have a Finite Range? (англ.) // Physical Review D : journal. — 1972. — Vol. 6, no. 12. — P. 3368—3382. — doi:10.1103/PhysRevD.6.3368.
Эта страница в последний раз была отредактирована 20 декабря 2022 в 15:51.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).