To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Zirconium(II) hydride

From Wikipedia, the free encyclopedia

Zirconium(II) hydride[1]
Names
IUPAC name
Zirconium(II) hydride[2][3]
Other names
  • Hydride;zirconium(2+)[2]
  • Zirconium(2+) dihydride[2][3]
  • Zirconium dihydride[2][3]
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.028.844 Edit this at Wikidata
EC Number
  • 231-727-3
RTECS number
UNII
  • InChI=1S/Zr.2H
    Key: QSGNKXDSTRDWKA-UHFFFAOYSA-N
  • [ZrH2]
  • [H-].[H-].[Zr+2]
Properties
ZrH2
Molar mass 93.240 g/mol
Appearance Grey tetragonal crystals or dark gray to black metallic powder[4][5]
Odor Odorless[4]
Density 5.60 g/cm3
Melting point 800°C (decomposes)
Insoluble[5]
Solubility Soluble in HF
Structure
tetragonal
dihedral (C2v)
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Skin irritation, eye irritation, flammable[5]
GHS labelling:
GHS02: Flammable
GHS07: Exclamation mark
Danger
H228, H315, H319, H335
P210, P240, P241, P261, P264, P271, P280, P302+P352, P304+P340+P312, P305+P351+P338, P332+P313, P337+P313, P362, P370+P378, P403+P233, P405, P501
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 1: Exposure would cause irritation but only minor residual injury. E.g. turpentineFlammability 3: Liquids and solids that can be ignited under almost all ambient temperature conditions. Flash point between 23 and 38 °C (73 and 100 °F). E.g. gasolineInstability 1: Normally stable, but can become unstable at elevated temperatures and pressures. E.g. calciumSpecial hazards (white): no code
1
3
1
270 °C
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Zirconium(II) hydride is a molecular chemical compound with the chemical formula ZrH2. It is a grey crystalline solid or dark gray to black powder.[4][5] It has been prepared by laser ablation and isolated at low temperature.[6]

Zirconium(II) hydride has repeatedly been the subject of DiracHartree–Fock relativistic calculation studies, which investigate the stabilities, geometries, and relative energies of hydrides of the formula MH4, MH3, MH2, or MH.

Zirconium(II) hydride has a dihedral (C2v) structure. In zirconium(II) hydride, the formal oxidation states of zirconium and hydrogen are +2 and −1, respectively, because the electronegativity of zirconium is lower than that of hydrogen. The stability of metal hydrides with the formula MH2 (M = Ti, Zr, Hf) decreases from Ti to Hf.

Uses

Zirconium(II) hydride is used as a thermal neutron moderator in nuclear reactors and as a material for neutron reflectors in fast reactors.[4]

Zirconium(II) hydride in the form of a powder is used in powder metallurgy as a hydrogenation catalyst, vacuum tube getter, foaming agent in the production of metal foams and as a reducing agent.[4]

References

  1. ^ Lide, David R. (1998), Handbook of Chemistry and Physics (87 ed.), Boca Raton, FL: CRC Press, pp. 4–96, ISBN 0-8493-0594-2
  2. ^ a b c d "Zirconium dihydride".
  3. ^ a b c "Zirconium hydride | H2Zr | ChemSpider".
  4. ^ a b c d e f "Zirconium Hydride (ZrH2) (CAS No. 7704-99-6) for Sale | Stanford Advanced Materials".
  5. ^ a b c d https://www.samaterials.com/pdf/Zirconium-Hydride-sds.pdf
  6. ^ Chertihin, George V.; Andrews, Lester (1995). "Reactions of laser-ablated Zr and Hf atoms with hydrogen. Matrix infrared spectra of the MH, MH2, MH3, and MH4 molecules". The Journal of Physical Chemistry. 99 (41): 15004–15010. doi:10.1021/j100041a014. ISSN 0022-3654.

See also

This page was last edited on 6 March 2024, at 22:42
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.