To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Wine chemistry

From Wikipedia, the free encyclopedia

280 nm 45 min LC chromatogram of a red wine, showing mainly phenolic compounds.

Wine is a complex mixture of chemical compounds in a hydro-alcoholic solution with a pH around 4. The chemistry of wine and its resultant quality depend on achieving a balance between three aspects of the berries used to make the wine: their sugar content, acidity and the presence of secondary compounds. Vines store sugar in grapes through photosynthesis, and acids break down as grapes ripen. Secondary compounds are also stored in the course of the season. Anthocyanins give grapes a red color and protection against ultraviolet light. Tannins add bitterness and astringency which acts to defend vines against pests and grazing animals.[1]

Environmental factors such as soil, rainfall and fog affect flavor in ways that can be described collectively as "character" or the French term “terroir”.[1] As climate change disrupts long-established patterns of temperature and precipitation in wine-growing regions and causes more extreme weather events, the rate at which sugars, acids and secondary compounds develop during the growing season can be disrupted. Hotter temperatures and an earlier growing season can push chemistry of berries towards higher sugar content, less acids and differences in aromas.[1] Other factors such as smoke taint from fires[1] can negatively impact chemistry and flavor, resulting in flaws and wine faults that can make the wines undrinkable.

YouTube Encyclopedic

  • 1/3
    Views:
    30 576
    170 730
    31 978
  • The Chemistry of Wine
  • How to Save Smelly Wine - Chemistry Life Hacks
  • 7 Wine Facts & Myths

Transcription

You know that guy in your group of friends that always brings wine to the party JUST so he can talk about it? He’s always saying things like “Ooh! There are notes of bacon! Reaaaally swish it around you’ll get those hints of cream soda. Really taste the purple.” It may sound strange, and it may make you get different friends, but all those different smells and tastes come from complex chemistry that gives each bottle of wine its unique flavors. [REACTIONS INTRO] First off, sorry high rollers, but no matter how much you paid for it, a bottle of wine is about 98 percent water and ethanol. It’s the remaining couple percent that makes wine taste like wine, and more specifically makes a shiraz taste different than a pinot noir. It comes down to three things: grapes, soil and climate. If you think all wines are pretty much the same, they ain’t! There are more than 10-thousand wine grape varieties in the world, all producing different tastes and smells when made into wine. Dirt is also a big factor. Famous winegrowing areas like France, California and Chile have distinct minerals in their soils across their vast geographies that make wines different. There are up to 60 trace elements in wine that help identify a soil or grape variety. Researchers can even identify chemical fingerprints in wine that point to the exact trees used to make the wooden barrels many wines are aged in. It’s like wine CSI, but with 100% less Caruso. The other huge factor is climate. Winemakers know that cold climates produce lower alcohol wines with more subtle flavors, while warm regions make more robust wines. That’s because the ripening process that produces sugars and many flavor molecules, slows at cooler temperatures. Once the grapes are crushed, natural and added yeasts begin to eat the sugars, turning them into alcohol and carbon dioxide. The carbon dioxide gas is allowed to bubble out. Like yeast farts. But as yeasts digest sugars and other compounds present in grape juice, they produce a host of molecules that give wines their flavor. Yeasts make acetic acid and other acids that give wines their tartness. Derivatives of pyruvic acid, contribute to red wine’s color. Yeasts also make diacetyl, which give Chardonnays their “buttery” aroma. And then there are the hundreds of other molecules that give wines their very specific flavors. For example, scientists have figured out that methoxypyrazines make some wines taste a bit like bell peppers. And it doesn’t take many molecules to tickle the taste buds. two parts per TRILLION of methoxypyrazines. Different molecules give the flavor or smell of grasses or nuts, while other common wine flavors, like chocolate or even tobacco, haven’t been pinned to a specific molecule. Another big component of wine’s flavor is tannins. Tannins are big molecules that come from the skin and seeds of grapes and also the wood in barrels used to age the wine. Look at that big sucker. Some tannins trigger taste receptors on your tongue and can give wine a bitter taste. Others can make your mouth feel dry, known as “astringency”. Remember gang, taste and smell are very complex processes, both chemically and in how your brain interprets them. So yes, you may not taste bell pepper or chocolate and someone else might. Don’t worry about it. Just enjoy! Thanks to our friends at Azari Vineyards in Petaluma, California for letting us drop by their gorgeous winery and raise a glass. Find out more about them in the description. If you want to keep this booze cruise going, check out our video on craft beer chemistry. And our friends over at Speaking of Chemistry actually took a bath in a bunch of red wine. Why would they do such a thing? You don’t want to miss that video! Trust me! And click subscribe to make sure you never miss one of ours either. Thanks for watching, Chemheads.

Types of natural molecules present in wine

Volatiles

Other molecules found in wine

Preservatives

Fining agents

Gum arabic has been used in the past as fining agent.[12]

List of additives permitted for use in the production of wine under European Union law:

Type or purpose of addition Permitted additives
Acidification tartaric acid
Clarification calcium alginate

potassium alginate
potassium caseinate
casein
isinglass
silicon dioxide
edible gelatine
acacia (gum arabic)
milk/lactalbumin
proteins of plant origin
ovalbumin (egg white)
alumino silicates
ferrous sulfate

Decolourants polyvinyl-polypyrrolidone (PVPP)

activated charcoal

Deacidification lactic bacteria

neutral potassium tartrate
potassium bicarbonate
calcium carbonate

Deodorant copper sulfate
Elaboration oak chips

metatartaric acid
water

Enrichment concentrated grape must

rectified concentrated grape must
saccharose
tannin
oxygen

Enzymes betaglucanase

pectolytics
urease

Fermentation fresh lees

ammonium bisulphite
thiamine hydrochloride
yeast cell walls
yeasts for wine production
diammonium phosphate
ammonium sulphate
ammonium sulphite

Sequestrants fresh lees

potassium ferrocyanide
calcium phytate
citric acid

Stabilisation calcium tartrate

potassium bitartrate
yeast mannoproteins
Preservatives sorbic acid
sulphur dioxide
argon
nitrogen
potassium bisulphite
dimethyl dicarbonate (DMDC)
carbon dioxide
potassium metabisulphite/disulfite
allyl isothiocyanate
lysozyme
potassium sorbate
ascorbic acid

Others

Wine faults

2,4,6-trichloroanisole, the chemical primarily responsible for cork taint in wines.

A wine fault or defect is an unpleasant characteristic of a wine often resulting from poor winemaking practices or storage conditions, and leading to wine spoilage. Many of the compounds that cause wine faults are already naturally present in wine but at insufficient concentrations to adversely affect it. However, when the concentration of these compounds greatly exceeds the sensory threshold, they replace or obscure the flavors and aromas that the wine should be expressing (or that the winemaker wants the wine to express). Ultimately the quality of the wine is reduced, making it less appealing and sometimes undrinkable.[14]

The yeast Brettanomyces produces an array of metabolites when growing in wine, some of which are volatile phenolic compounds. Brettanomyces converts p-coumaric acid to 4-vinylphenol via the enzyme cinnamate decarboxylase.[15] 4-Vinylphenol is further reduced to 4-ethylphenol by the enzyme vinyl phenol reductase. 4-Ethylphenol causes a wine fault at a concentration of greater than 140 μg/L. Other compounds produced by Brettanomyces that cause wine faults include 4-ethylguaiacol and isovaleric acid.

Coumaric acid is sometimes added to microbiological media, enabling the positive identification of Brettanomyces by smell.

Geraniol is a by-product of the metabolism of sorbate.

Fusel alcohols are a mixture of several alcohols (chiefly amyl alcohol) produced as a by-product of alcoholic fermentation.

See also

Notes

  1. ^ a b c d Chrobak, Ula; Zimmer, Katarina (22 June 2022). "Climate change is altering the chemistry of wine". Knowable Magazine. doi:10.1146/knowable-062222-1. Retrieved 11 July 2022.
  2. ^ a b c Villamor, Remedios R.; Ross, Carolyn F. (28 February 2013). "Wine Matrix Compounds Affect Perception of Wine Aromas". Annual Review of Food Science and Technology. 4 (1): 1–20. doi:10.1146/annurev-food-030212-182707. ISSN 1941-1413. PMID 23464569. Retrieved 11 July 2022.
  3. ^ Monoterpenes in grape juice and wines. M. Jiménez, Journal of Chromatography A, Volume 881, Issues 1–2, 9 June 2000, Pages 557–567, doi:10.1016/S0021-9673(99)01342-4
  4. ^ Terpenes in the aroma of grapes and wines: A review. J. Marais, S. Afr. J. Enol. Vitic., 1983, volume 4, number 2, pages 49-58 (article)
  5. ^ Inhibition of the decline of linalool and α-terpineol in muscat wines by glutathione and N-acetyl-cysteine. Papadopoulou D. and Roussis I. G., Italian journal of food science, 2001, vol. 13, no4, pages 413-419, INIST 13441184
  6. ^ Using LC-MSMS To Assess Glutathione Levels in South African White Grape Juices and Wines Made with Different Levels of Oxygen. Wessel Johannes Du Toit, Klemen Lisjak, Maria Stander and Dersiree Prevoo, J. Agric. Food Chem., 2007, Vol. 55, No. 8, doi:10.1021/jf062804p
  7. ^ Straightforward Method To Quantify GSH, GSSG, GRP, and Hydroxycinnamic Acids in Wines by UPLC-MRM-MS. Anna Vallverdú-Queralt, Arnaud Verbaere, Emmanuelle Meudec, Veronique Cheynier and Nicolas Sommerer, J. Agric. Food Chem. 2015, 63, 142−149, doi:10.1021/jf504383g
  8. ^ Günata, Ziya; Wirth, Jérémie L.; Guo, Wenfei; Baumes, Raymond L. (2001). "C13-Norisoprenoid Aglycon Composition of Leaves and Grape Berries from Muscat of Alexandria and Shiraz Cultivars". In Winterhalter, Peter; Rouseff, Russell L. (eds.). Carotenoid-Derived Aroma Compounds. ACS Symposium Series. Vol. 802. p. 255. doi:10.1021/bk-2002-0802.ch018. ISBN 0-8412-3729-8.
  9. ^ P. Winterhalter, M. A. Sefton and P. J. Williams (1990). "Volatile C13-Norisoprenoid Compounds in Riesling Wine Are Generated From Multiple Precursors". Am. J. Enol. Vitic. 41 (4): 277–283. doi:10.5344/ajev.1990.41.4.277. S2CID 101007887.
  10. ^ Zelena, Kateryna; Hardebusch, Björn; Hülsdau, BäRbel; Berger, Ralf G.; Zorn, Holger (2009). "Generation of Norisoprenoid Flavors from Carotenoids by Fungal Peroxidases". Journal of Agricultural and Food Chemistry. 57 (21): 9951–5. doi:10.1021/jf901438m. PMID 19817422.
  11. ^ Cabaroglu, Turgut; Selli, Serkan; Canbas, Ahmet; Lepoutre, Jean-Paul; Günata, Ziya (2003). "Wine flavor enhancement through the use of exogenous fungal glycosidases". Enzyme and Microbial Technology. 33 (5): 581. doi:10.1016/S0141-0229(03)00179-0.
  12. ^ Vivas N, Vivas de Gaulejac N, Nonier M.F and Nedjma M (2001). "Incidence de la gomme arabique sur l'astringence des vins et leurs stabilites colloidales" [Effect of gum arabic on wine astringency and colloidal stability]. Progres Agricole et Viticole (in French). 118 (8): 175–176.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  13. ^ Lamont, Kim T.; Somers, Sarin; Lacerda, Lydia; Opie, Lionel H.; Lecour, Sandrine (2011). "Is red wine a SAFE sip away from cardioprotection? Mechanisms involved in resveratrol- and melatonin-induced cardioprotection". Journal of Pineal Research. 50 (4): 374–80. doi:10.1111/j.1600-079X.2010.00853.x. PMID 21342247. S2CID 8034935.
  14. ^ M. Baldy "The University Wine Course" Third Edition pgs 37-39, 69-80, 134-140 The Wine Appreciation Guild 2009 ISBN 0-932664-69-5
  15. ^ Brettanomyces Monitoring by Analysis of 4-ethylphenol and 4-ethylguaiacol Archived 2008-02-19 at the Wayback Machine at etslabs.com

References

  • Comprehensive Natural Products II — Chemistry and Biology, chapter 3.26 – Chemistry of Wine, volume 3, pages 1119–1172. Véronique Cheynier, Rémi Schneider, Jean-Michel Salmon and Hélène Fulcrand, doi:10.1016/B978-008045382-8.00088-5

External links

This page was last edited on 18 May 2024, at 19:28
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.