To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

WASP-107b
Artist's impression of exoplanet WASP-107b.[1]
Discovery
Discovered byD. R. Anderson et al.
Discovery date2017
WASP-South
Orbital characteristics
0.0566 ± 0.0017 AU (8,470,000 ± 250,000 km)[2]
Eccentricity0.06 ± 0.04[2]
5.7214742 d[2]
StarWASP-107
Physical characteristics
Mean radius
0.96±0.03 RJ[2]
Mass0.096±0.005[2] MJ

WASP-107b is a super-Neptune exoplanet that orbits the star WASP-107. It lies 200 light-years away from Earth in the constellation Virgo.[3] Its discovery was announced in 2017 by a team led by D. R. Anderson via the WASP-South.[4]

Planetary orbit

WASP-107b could not have formed in its current orbit. It likely migrated inward from its birth orbit beyond 1 AU due to interaction with the heavier planet WASP-107c. It is in a retrograde orbit, strongly misaligned with the equatorial plane of the parent star. The misalignment angle is equal to 118°+38
−19
.[5] WASP-107c follows a highly eccentric and inclined orbit with a period of 1088+15
−16
days.[2]

Physical characteristics

WASP-107b is a super-Neptune ice giant exoplanet located 200 light years away from Earth in the constellation Virgo.[3] It is roughly the size of Jupiter but less than one-tenth of Jupiter's mass, making it one of the lowest density exoplanets.[2] Its radius is 0.96±0.03 times Jupiter's, making its atmosphere fluffy, and coupled with transiting a moderately bright K-type star, makes it a target for atmospheric characterization.[6] It is eight times nearer to its star than Mercury is to the Sun and orbits its star every 5.7 days.[3] With a temperature of 500 °C (932 °F), its atmosphere makes it one of the hottest known exoplanets.[3]

Helium was discovered in the planet's atmosphere in 2018, making it the first time helium was discovered on an exoplanet.[7] A follow-up observation with Keck in 2020 showed that the helium absorption extends beyond transit-egress.[8] Extreme ultraviolet radiation from the host star is gradually whittling down the planet's atmosphere, forming a comet-like tail 7 times as long as the radius of the planet.[9][10]

In November 2023, scientists discovered that its atmosphere contains water vapor and sulfur dioxide. The clouds on this planet are made up of silicates.[11][12] The James Webb Space Telescope (JWST) revealed groundbreaking findings[13] about exoplanet WASP-107b. Utilizing its Mid-Infrared Instrument (MIRI), European astronomers discovered water vapor, sulfur dioxide, and silicate sand clouds in its atmosphere. This challenges existing models and deepens our understanding of exoplanetary atmospheres, marking a significant milestone in exoplanetary exploration.

In May 2024, groundbreaking new findings about WASP-107b were revealed by the James Webb Space Telescope (JWST). Webb's observations,[14] using its Near-Infrared Camera (NIRCam), Mid-Infrared Instrument (MIRI), and Near-Infrared Spectrograph (NIRSpec), detected water vapor (H2O), methane (CH4), carbon dioxide (CO2), carbon monoxide (CO), sulfur dioxide (SO2), and ammonia (NH3) in the exoplanet's atmosphere. This data, along with the surprisingly low abundance of methane, suggests a hotter interior and a more massive core than previously estimated. Tidal heating, caused by the planet's slightly elliptical orbit, is believed to be the source of the extra internal heat. These findings challenge existing models of exoplanet formation and atmosphere composition, marking a significant leap in our understanding of these distant worlds.

See also

References

  1. ^ heic1809 (2 May 2018). "Hubble detects helium in the atmosphere of an exoplanet for the first time". www.spacetelescope.org. Retrieved 4 May 2018.{{cite web}}: CS1 maint: numeric names: authors list (link)
  2. ^ a b c d e f g Piaulet, Caroline; Benneke, Björn; et al. (2021-01-18). "WASP-107b's Density Is Even Lower: A Case Study for the Physics of Planetary Gas Envelope Accretion and Orbital Migration". The Astronomical Journal. 161 (2): 70. arXiv:2011.13444. Bibcode:2021AJ....161...70P. doi:10.3847/1538-3881/abcd3c. ISSN 1538-3881. S2CID 227208673.
  3. ^ a b c d Reed, Nola (2 May 2018). "An Exoplanet First! Helium Spotted on Bizarre Comet-Like World". Space.com.
  4. ^ Anderson, D.R.; Cameron, A. Collier; et al. (August 2017). "The discoveries of WASP-91b, WASP-105b and WASP-107b: Two warm Jupiters and a planet in the transition region between ice giants and gas giants" (PDF). Astronomy & Astrophysics. 604 (A110): A110. arXiv:1701.03776. Bibcode:2017A&A...604A.110A. doi:10.1051/0004-6361/201730439. S2CID 58910823.
  5. ^ Rubenzahl, Ryan A.; Dai, Fei; Howard, Andrew W.; Chontos, Ashley; Giacalone, Steven; Lubin, Jack; Rosenthal, Lee J.; Isaacson, Howard; Batalha, Natalie M.; Crossfield, Ian J. M.; Dressing, Courtney; Fulton, Benjamin; Huber, Daniel; Kane, Stephen R.; Petigura, Erik A.; Robertson, Paul; Roy, Arpita; Weiss, Lauren M.; Beard, Corey; Hill, Michelle L.; Mayo, Andrew; Mocnik, Teo; Murphy, Joseph M. Akana; Scarsdale, Nicholas (2021), "The TESS–Keck Survey. IV. A Retrograde, Polar Orbit for the Ultra-low-density, Hot Super-Neptune WASP-107b", The Astronomical Journal, 161 (3): 119, arXiv:2101.09371, Bibcode:2021AJ....161..119R, doi:10.3847/1538-3881/abd177, S2CID 231698426
  6. ^ "First results on the atmosphere of WASP-107b". Wide Angle Search for Planets. September 27, 2017.
  7. ^ Witze, Alexandra (2 May 2018). "Astronomers spot helium on exoplanet for first time". Nature. doi:10.1038/d41586-018-05052-w.
  8. ^ Kirk, James; Alam, Munazza K.; Lopez-Morales, Mercedes; Zeng, Li (2020-01-21). "Confirmation of WASP-107b's extended Helium atmosphere with Keck II/NIRSPEC". The Astronomical Journal. 159 (3): 115. arXiv:2001.07667. Bibcode:2020AJ....159..115K. doi:10.3847/1538-3881/ab6e66. S2CID 210838904.
  9. ^ waspplanets (2020-01-22). "Helium reveals the extended atmosphere of WASP-107b". WASP Planets. Retrieved 2020-01-22.
  10. ^ Spake, J. J.; Oklopčić, A.; Hillenbrand, L. A. (2021), "The Posttransit Tail of WASP-107b Observed at 10830 Å", The Astronomical Journal, 162 (6): 284, arXiv:2107.08999, Bibcode:2021AJ....162..284S, doi:10.3847/1538-3881/ac178a, S2CID 236087427
  11. ^ "Clouds made of sand make for a strange kind of rain on this hot planet". NPR News. Retrieved 16 November 2023.
  12. ^ Dyrek, Achrène; Min, Michiel; Decin, Leen; Bouwman, Jeroen; Crouzet, Nicolas; Mollière, Paul; Lagage, Pierre-Olivier; Konings, Thomas; Tremblin, Pascal; Güdel, Manuel; Pye, John; Waters, Rens; Henning, Thomas; Vandenbussche, Bart; Ardevol Martinez, Francisco (2023-11-15). "SO2, silicate clouds, but no CH4 detected in a warm Neptune". Nature: 1–3. arXiv:2311.12515. doi:10.1038/s41586-023-06849-0. ISSN 0028-0836. PMID 37967578. S2CID 265219725.
  13. ^ "The Astonishing Atmosphere of WASP-107b as Revealed by James Webb Telescope". www.jameswebbdiscovery.com. Retrieved 2024-02-12.
  14. ^ "Webb Cracks Case of Inflated Exoplanet - NASA Science". science.nasa.gov. Retrieved 2024-05-21.

External links

This page was last edited on 23 May 2024, at 14:02
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.