To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Voigt notation

From Wikipedia, the free encyclopedia

In mathematics, Voigt notation or Voigt form in multilinear algebra is a way to represent a symmetric tensor by reducing its order.[1] There are a few variants and associated names for this idea: Mandel notation, Mandel–Voigt notation and Nye notation are others found. Kelvin notation is a revival by Helbig[2] of old ideas of Lord Kelvin. The differences here lie in certain weights attached to the selected entries of the tensor. Nomenclature may vary according to what is traditional in the field of application.

For example, a 2×2 symmetric tensor X has only three distinct elements, the two on the diagonal and the other being off-diagonal. Thus it can be expressed as the vector

As another example:

The stress tensor (in matrix notation) is given as

In Voigt notation it is simplified to a 6-dimensional vector:

The strain tensor, similar in nature to the stress tensor—both are symmetric second-order tensors --, is given in matrix form as

Its representation in Voigt notation is

where , , and are engineering shear strains.

The benefit of using different representations for stress and strain is that the scalar invariance

is preserved.

Likewise, a three-dimensional symmetric fourth-order tensor can be reduced to a 6×6 matrix.

YouTube Encyclopedic

  • 1/5
    Views:
    869
    7 096
    11 970
    7 303
    714
  • Material Behaviour – 3: Voigt Notation
  • L08 Constitutive equations: Linear elasticity (orthohombic, VTI, isotropic)
  • Symmetry Structure and Tensor Properties of Materials Lecture 88
  • Generalized Hooke's Law
  • EP2P04 Topic 11 - General Elasticity

Transcription

Mnemonic rule

A simple mnemonic rule for memorizing Voigt notation is as follows:

  • Write down the second order tensor in matrix form (in the example, the stress tensor)
  • Strike out the diagonal
  • Continue on the third column
  • Go back to the first element along the first row.

Voigt indexes are numbered consecutively from the starting point to the end (in the example, the numbers in blue).

Mandel notation

For a symmetric tensor of second rank

only six components are distinct, the three on the diagonal and the others being off-diagonal. Thus it can be expressed, in Mandel notation,[3] as the vector

The main advantage of Mandel notation is to allow the use of the same conventional operations used with vectors, for example:

A symmetric tensor of rank four satisfying and has 81 components in three-dimensional space, but only 36 components are distinct. Thus, in Mandel notation, it can be expressed as

Applications

The notation is named after physicist Woldemar Voigt & John Nye (scientist). It is useful, for example, in calculations involving constitutive models to simulate materials, such as the generalized Hooke's law, as well as finite element analysis,[4] and Diffusion MRI.[5]

Hooke's law has a symmetric fourth-order stiffness tensor with 81 components (3×3×3×3), but because the application of such a rank-4 tensor to a symmetric rank-2 tensor must yield another symmetric rank-2 tensor, not all of the 81 elements are independent. Voigt notation enables such a rank-4 tensor to be represented by a 6×6 matrix. However, Voigt's form does not preserve the sum of the squares, which in the case of Hooke's law has geometric significance. This explains why weights are introduced (to make the mapping an isometry).

A discussion of invariance of Voigt's notation and Mandel's notation can be found in Helnwein (2001).[6]

See also

References

  1. ^ Woldemar Voigt (1910). Lehrbuch der Kristallphysik. Teubner, Leipzig. Retrieved November 29, 2016.
  2. ^ Klaus Helbig (1994). Foundations of anisotropy for exploration seismics. Pergamon. ISBN 0-08-037224-4.
  3. ^ Jean Mandel (1965). "Généralisation de la théorie de plasticité de WT Koiter". International Journal of Solids and Structures. 1 (3): 273–295. doi:10.1016/0020-7683(65)90034-x.
  4. ^ O.C. Zienkiewicz; R.L. Taylor; J.Z. Zhu (2005). The Finite Element Method: Its Basis and Fundamentals (6 ed.). Elsevier Butterworth—Heinemann. ISBN 978-0-7506-6431-8.
  5. ^ Maher Moakher (2009). "The Algebra of Fourth-Order Tensors with Application to Diffusion MRI". Visualization and Processing of Tensor Fields. Mathematics and Visualization. Springer Berlin Heidelberg. pp. 57–80. doi:10.1007/978-3-540-88378-4_4. ISBN 978-3-540-88377-7.
  6. ^ Peter Helnwein (February 16, 2001). "Some Remarks on the Compressed Matrix Representation of Symmetric Second-Order and Fourth-Order Tensors". Computer Methods in Applied Mechanics and Engineering. 190 (22–23): 2753–2770. Bibcode:2001CMAME.190.2753H. doi:10.1016/s0045-7825(00)00263-2.
This page was last edited on 24 March 2024, at 22:29
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.