To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Upstream and downstream (transduction)

From Wikipedia, the free encyclopedia

The extracellular type II and type I kinase receptors binding to the TGF-β ligands.
The type II receptors phosphorylate the type I receptors; the type I receptors are then enabled to phosphorylate cytoplasmic R-Smads, which then act as transcriptional regulators.

The upstream signaling pathway is triggered by the binding of a signaling molecule, a ligand, to a receiving molecule, a receptor. Receptors and ligands exist in many different forms, and only recognize/bond to particular molecules. Upstream extracellular signaling transduce a variety of intracellular cascades.[1]

Receptors and ligands are common upstream signaling molecules that dictate the downstream elements of the signal pathway. A plethora of different factors affect which ligands bind to which receptors and the downstream cellular response that they initiate.

YouTube Encyclopedic

  • 1/3
    Views:
    397 867
    347 241
    67 009
  • Overview of cell signaling
  • Regulation of transcription | Biomolecules | MCAT | Khan Academy
  • Transcription Factors & Promoter Region.

Transcription

TGF-β

The extracellular type II and type I kinase receptors binding to the TGF-β ligands. Transforming growth factor-β (TGF-β) is a superfamily of cytokines that play a significant upstream role in regulating of morphogenesis, homeostasis, cell proliferation, and differentiation.[2] The significance of TGF-β is apparent with the human diseases that occur when TGF-β processes are disrupted, such as cancer, and skeletal, intestinal and cardiovascular diseases.[3][4] TGF-β is pleiotropic and multifunctional, meaning they are able to act on a wide variety of cell types.[5]

Mechanism

The effects of transforming growth factor-β (TGF-β) are determined by cellular context. There are three kinds of contextual factors that determine the shape the TGF-β response: the signal transduction components, the transcriptional cofactors and the epigenetic state of the cell. The different ligands and receptors of TGF-β are significant as well in the composition signal transduction pathway.[2]

Upstream pathway

The type II receptors phosphorylate the type I receptors; the type I receptors are then enabled to phosphorylate cytoplasmic R-Smads, which then act as transcriptional regulators.[6][2] Signaling is initiated by the binding of TGF-β to its serine/threonine receptors. The serene/threonine receptors are the type II and type I receptors on the cell membrane. Binding of a TGF-β members induces assembly of a heterotetrameric complex of two type I and two type II receptors at the plasma membrane.[6] Individual members of the TGF-β family bind to a certain set of characteristic combination of these type I and type II receptors.[7] The type I receptors can be divided into two groups, which depends on the cytoplasmic R-Smads that they bind and phosphorylate. The first group of type I receptors (Alk1/2/3/6) bind and activate the R-Smads, Smad1/5/8. The second group of type I reactors (Alk4/5/7) act on the R-Smads, Smad2/3. The phosphorylated R-Smads then form complexes and the signals are funneled through two regulatory Smad (R-Smad) channels (Smad1/5/8 or Smad2/3).[6][2] After the ligand-receptor complexes phosphorylate the cytoplasmic R-Smads, the signal is then sent through Smad 1/5/8 or Smad 2/3. This leads to the downstream signal cascade and cellular gene targeting.[6][5]

Downstream pathway

TGF-β regulates multiple downstream processes and cellular functions. The pathway is highly variable based on cellular context. TGF-β downstream signaling cascade includes regulation of cell growth, cell proliferation, cell differentiation, and apoptosis.[8]

See also

References

  1. ^ Miller DS, Schmierer B, Hill CS (July 2019). "TGF-β family ligands exhibit distinct signalling dynamics that are driven by receptor localisation". Journal of Cell Science. 132 (14): jcs234039. doi:10.1242/jcs.234039. PMC 6679586. PMID 31217285.
  2. ^ a b c d Massagué J (October 2012). "TGFβ signalling in context". Nature Reviews. Molecular Cell Biology. 13 (10): 616–30. doi:10.1038/nrm3434. PMC 4027049. PMID 22992590.
  3. ^ Kashima R, Hata A (January 2018). "The role of TGF-β superfamily signaling in neurological disorders". Acta Biochimica et Biophysica Sinica. 50 (1): 106–120. doi:10.1093/abbs/gmx124. PMC 5846707. PMID 29190314.
  4. ^ Huang T, Schor SL, Hinck AP (September 2014). "Biological activity differences between TGF-β1 and TGF-β3 correlate with differences in the rigidity and arrangement of their component monomers". Biochemistry. 53 (36): 5737–49. doi:10.1021/bi500647d. PMC 4165442. PMID 25153513.
  5. ^ a b Letterio JJ, Roberts AB (1998-04-01). "Regulation of immune responses by TGF-beta". Annual Review of Immunology. 16 (1): 137–61. doi:10.1146/annurev.immunol.16.1.137. PMID 9597127.
  6. ^ a b c d Vilar JM, Jansen R, Sander C (January 2006). "Signal processing in the TGF-beta superfamily ligand-receptor network". PLOS Computational Biology. 2 (1): e3. arXiv:q-bio/0509016. Bibcode:2006PLSCB...2....3V. doi:10.1371/journal.pcbi.0020003. PMC 1356091. PMID 16446785.
  7. ^ Heldin CH, Moustakas A (August 2016). "Signaling Receptors for TGF-β Family Members". Cold Spring Harbor Perspectives in Biology. 8 (8): a022053. doi:10.1101/cshperspect.a022053. PMC 4968163. PMID 27481709.
  8. ^ Li N, Xie C, Lu NH (2015). "Transforming growth factor-β: an important mediator in Helicobacter pylori-associated pathogenesis". Frontiers in Cellular and Infection Microbiology. 5: 77. doi:10.3389/fcimb.2015.00077. PMC 4632021. PMID 26583078.
This page was last edited on 28 November 2023, at 05:06
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.