To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

Trim drag, denoted as Dm in the diagram, is the component of aerodynamic drag on an aircraft created by the flight control surfaces,[1] mainly elevators and trimable horizontal stabilizers, when they are used to offset changes in pitching moment and centre of gravity during flight. For longitudinal stability in pitch and in speed, aircraft are designed in such a way that the centre of mass (centre of gravity) is forward of the neutral point. The nose-down pitching moment is compensated by the downward aerodynamic force on the elevator and the trimable horizontal stabilizer. This downwards force on the tailplane (horizontal stabilizer and elevator combination) produces lift–induced drag in a similar way as the lift on the wing produces lift–induced drag. The changes (shifts) of the position of the centre of mass are often caused by fuel being burned off over the period of the flight, and require the aerodynamic trim force to be adjusted. Systems that actively pump fuel between separate fuel tanks in the aircraft can be used to offset this effect and reduce the trim drag.

Fly-By-Wire flight control systems can completely eliminate trim drag at transonic speeds, and reduce it substantially at supersonic speeds by using the tail as a lifting body, adding to wing lift, at subsonic speeds, transitioning to pushing down against the wing as in conventional designs at supersonic speeds, and just at Mach 1 going completely neutral, providing no lift whatsoever in either direction. This not only eliminates trim drag but also slightly reduces induced drag when crossing the sound barrier.

References

  1. ^ Huijts, Crispijn; Voskuijl, Mark (October 2015). "The impact of control allocation on trim drag of blended wing body aircraft". Aerospace Science and Technology. 46: 72–81. doi:10.1016/j.ast.2015.07.001. ISSN 1270-9638.
This page was last edited on 10 April 2024, at 05:01
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.