To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Thermal history coating

From Wikipedia, the free encyclopedia

A thermal history coating (THC) is a robust coating containing various non-toxic chemical compounds whose crystal structures irreversibly change at high temperatures. This allows for temperature measurements and thermal analysis to be performed on intricate and inaccessible components, which operate in harsh environments. Like thermal barrier coatings, THCs provide protection from intense heat to the surfaces on which they are applied. The temperature range that THCs provide accurate temperature measurements in is 900 °C to 1400 °C with an accuracy of ±10 °C.[1]

YouTube Encyclopedic

  • 1/3
    Views:
    2 375
    437
    310
  • Thermal History of Planetary Objects and Exoplanets - Tilmann Spohn (SETI Talks)
  • Camouflage Pigments
  • Line 18 a3z5b3b Tetrahedrite Quark Wafers CVD Thermal Spraying Plasma 5g WOW SETI

Transcription

Application of THCs

THCs are applied by atmospheric plasma spraying, which is a thermal spraying technique. This ensures that the coatings are robust to allow long life-times in harsh environments, such as on jet engine components, which experience temperatures in excess of 1000 °C[2] and angular velocities of up to 10,000rpm[3] (revolutions per minute).

Temperature Measurement

Phosphorescent Properties

THCs are composed of phosphor materials, whose luminescent characteristics are temperature- and duration-dependent. Phosphor thermometry is the measurement technique used for determining the past temperatures of THCs,[4] whereby the luminescent characteristics of the coatings are exploited and matched to calibration tables.

Temperature mapping across surface of heated disc

Instrumentation

The phosphorescence of THCs is excited by use of an external light source such as a laser pen. An optical system then collects a reflected light signal, whose characteristics provide information on the crystal structure of the THC. Crystal structure properties are then converted into temperatures, which had previously been experience by the coatings. This allows for point measurements to be made across the coated surfaces of components and allows thermal analysis to be carried out.

Applications

R&D

THCs are used in high temperature applications where temperature knowledge is essential in research and development programmes, for example in identifying hot spots, which could lead to structural damage of components.

Warranty

As the THCs provide historic temperature information, they can be used as warranty tools, where certain components, such as valves or particular engine or machinery components must not exceed certain temperatures.

Other High-Temperature Detection Technologies

References

  1. ^ J. P. Feist, J. R. Nicholls, M. J. Fraser, A. L. Heyes (2006) "Luminescent material compositions and structures incorporating the same" Patent PCT/GB2006/003177
  2. ^ "Journey through a jet engine". Retrieved 2014-06-05.
  3. ^ "How the jet engine works". Retrieved 2014-06-05.
  4. ^ J. P. Feist, A. L. Heyes and S. Seefeldt (2003). "Thermographic phosphor thermometry for film cooling studies in gas turbine combustors". Journal of Power and Energy. 217 (2): 193–200. Bibcode:2003PIMEA.217..193F. doi:10.1243/09576500360611227. S2CID 95454730.
  5. ^ Martin Maldovan (2013). "Narrow Low-Frequency Spectrum and Heat Management by Thermocrystals" (PDF). Physical Review. 110 (2): 025902. Bibcode:2013PhRvL.110b5902M. doi:10.1103/PhysRevLett.110.025902. hdl:1721.1/77178. PMID 23383916. S2CID 5191759.
This page was last edited on 28 December 2023, at 16:15
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.