To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

Rodingite from Maryland

Rodingite is a metasomatic rock composed of grossular-andradite garnet, calcic pyroxene, vesuvianite, epidote and scapolite.[1] Rodingites are common where mafic rocks are in proximity to serpentinized ultramafic rocks. The mafic rocks are altered by high pH, Ca2+ and OH fluids, which are a byproduct of the serpentinization process, and become rodingites.[2][3] The mineral content of rodingites is highly variable, their high calcium, low silicon and environment of formation being their defining characteristic.[4] Rodingites are common in ophiolites, serpentinite mélanges, ocean floor peridotites and eclogite massifs. Rodingite was first named from outcrops of the Dun Mountain Ophiolite Belt in the Roding River, Nelson, New Zealand.[5]

An obsolete name for rodingite is granatite.

A rodingite dyke (white) in serpentinite (green) in the Dun Mountain Ophiolite Belt, New Zealand

References

  1. ^ Fettes, Douglas; Desmons, Jacqueline (2007). Metamorphic Rocks - A Classification and Glossary of Terms. Cambridge University Press.
  2. ^ Laborda-López, Casto; López-Sánchez-Vizcaíno, Vicente; Marchesi, Claudio; Gómez-Pugnaire, María Teresa; Garrido, Carlos J.; Jabaloy-Sánchez, Antonio; Padrón-Navarta, José A.; Hydas, Károly (2018). "High‐P metamorphism of rodingites during serpentinite dehydration (Cerro del Almirez, Southern Spain): Implications for the redox state in subduction zones". Journal of Metamorphic Geology. 36 (9): 1141–1173. Bibcode:2018JMetG..36.1141L. doi:10.1111/jmg.12440. hdl:10261/214213.
  3. ^ Salvioli-Mariani, Emma; Boschetti, Tiziano; Toscani, Lorenzo; Montanini, Alessandra; Petriglieri, Jasmine Rita; Bersani, Danilo (2020). "Multi-stage rodingitization of ophiolitic bodies from Northern Apennines (Italy): Constraints from petrography, geochemistry and thermodynamic modelling". Geoscience Frontiers. 11 (6): 2103–2125. Bibcode:2020GeoFr..11.2103S. doi:10.1016/j.gsf.2020.04.017.
  4. ^ Python; Marie; Masako; Yoshikawa; Tomoyuki Shibata; Shoji Arai (2011). Dyke swarms: Keys for geodynamic interpretation. Berlin, Heidelberg: Springer. pp. 401–435. Bibcode:2011dskg.book.....S.
  5. ^ Johnston, M. R. (2007). "Nineteenth-century observations of the Dun Mountain Ophiolite Belt, Nelson, New Zealand and trans-Tasman correlations". Geological Society, London, Special Publications. 287 (1): 375–387. Bibcode:2007GSLSP.287..375J. doi:10.1144/sp287.27. S2CID 129776536.


This page was last edited on 5 January 2024, at 20:49
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.