To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Resolution (electron density)

From Wikipedia, the free encyclopedia

Series of resolutions for GroEL: from left to right, 4 Å, 8 Å, 16 Å, and 32 Å resolution. The details are smeared away as the resolution becomes lower.

Resolution in terms of electron density is a measure of the resolvability in the electron density map of a molecule. In X-ray crystallography, resolution is the highest resolvable peak in the diffraction pattern, while resolution in cryo-electron microscopy is a frequency space comparison of two halves of the data, which strives to correlate with the X-ray definition.[1]

YouTube Encyclopedic

  • 1/3
    Views:
    1 558
    711
    454
  • X-rays and Electron Density: Dorothy Hodgkin's Work on Penicillin
  • 09: Electron Density Maps
  • Space News - ISRO Space Shuttle , Air leak on ISS and many more!

Transcription

Qualitative measures

In structural biology, resolution can be broken down into 4 groups: (1) sub-atomic, when information about the electron density is obtained and quantum effects can be studied, (2) atomic, individual atoms are visible and an accurate three-dimensional model can be constructed, (3) helical, secondary structure, such as alpha helices and beta sheets; RNA helices (in ribosomes), (4) domain, no secondary structure is resolvable.[clarification needed]

Qualitative Interpretations of Protein Structures at Various Resolution Ranges [2] [3]
Resolution (Å) Meaning
>4.0 Individual atomic coordinates meaningless. Secondary structure elements can be determined.
3.0 - 4.0 Fold possibly correct, but errors are very likely. Many sidechains placed with wrong rotamer.
2.5 - 3.0 Fold likely correct except that some surface loops might be mismodelled. Several long, thin sidechains (lys, glu, gln, etc.) and small sidechains (ser, val, thr, etc.) likely to have wrong rotamers.
2.0 - 2.5 As 2.5 - 3.0, but number of sidechains in wrong rotamer is considerably less. Many small errors can normally be detected. Fold normally correct and number of errors in surface loops is small. Water molecules and small ligands become visible.
1.5 - 2.0 Few residues have wrong rotamer. Many small errors can normally be detected. Folds are rarely incorrect, even in surface loops.
0.5 - 1.5 In general, structures have almost no errors at this resolution. Individual atoms in a structure can be resolved. Rotamer libraries and geometry studies are made from these structures.

X-ray crystallography

As the crystal's repeating unit, its unit cell, becomes larger and more complex, the atomic-level picture provided by X-ray crystallography becomes less well-resolved (more "fuzzy") for a given number of observed reflections. Two limiting cases of X-ray crystallography are often discerned, "small-molecule" and "macromolecular" crystallography. Small-molecule crystallography typically involves crystals with fewer than 100 atoms in their asymmetric unit; such crystal structures are usually so well resolved that its atoms can be discerned as isolated "blobs" of electron density. By contrast, macromolecular crystallography often involves tens of thousands of atoms in the unit cell. Such crystal structures are generally less well-resolved (more "smeared out"); the atoms and chemical bonds appear as tubes of electron density, rather than as isolated atoms. In general, small molecules are also easier to crystallize than macromolecules; however, X-ray crystallography has proven possible even for viruses with hundreds of thousands of atoms.[4]

Cryo-electron microscopy

In cryo-electron microscopy (cryoEM), resolution is typically measured by the Fourier shell correlation (FSC),[5] a three-dimensional extension of the Fourier ring correlation (FRC),[6] which is also known as the spatial frequency correlation function.[7] The FSC is a comparison of the Fourier transforms of two different constructed charge density maps, each map constructed from half of the orginal dataset.

Historically, there was much disagreement on which cutoff in the FSC would provide a good estimation of resolution[1][8], but the emerging gold-standard is the FSC cutoff of 0.143.[9] This cutoff is derived from equivalencies to the X-ray crystallography standards of resolution definition.[10]

Historical measurements

Many other criteria for determining resolution using the FSC curve exist, including the 3-σ criterion, 5-σ criterion, and 0.5 threshold. However, fixed-value thresholds (like 0.5, or 0.143) were argued to be based on incorrect statistical assumptions,[11] though 0.143 has been shown to be strict enough so as to likely not overestimate resolution.[9] The half-bit criterion indicates at which resolution there exists enough information to reliably interpret the volume, and the (modified) 3-σ criterion indicates where the FSC systematically emerges above the expected random correlations of the background noise.[11]

In 2007, a resolution criterion independent of the FSC, Fourier Neighbor Correlation (FNC), was developed using the correlation between neighboring Fourier voxels to distinguish signal from noise. The FNC can be used to predict a less-biased FSC.[12]

See also

Notes

  1. ^ a b Frank, Joachim (2006). Three-dimensional electron microscopy of macromolecular assemblies: visualization of biological molecules in their native state (2nd ed.). Oxford: Oxford University Press. ISBN 978-0-19-518218-7.
  2. ^ Huang, Yu-Feng (2007). Study of Mining Protein Structural Properties and its Application (PDF) (Ph.D.). National Taiwan University. Retrieved Nov 4, 2014.
  3. ^ Blow, David (June 20, 2002). Outline of Crystallography for Biologists. New York: Oxford University Press. p. 196. ISBN 978-0198510512. Retrieved Nov 4, 2014.
  4. ^ Hopper, P.; Harrison, S.C.; Sauer, R.T. (1984). "Structure of tomato bushy stunt virus. V. Coat protein sequence determination and its structural implications". Journal of Molecular Biology. Elsevier Ltd. 177 (4): 701–713. doi:10.1016/0022-2836(84)90045-7. PMID 6481803.
  5. ^ Harauz & van Heel, 1986
  6. ^ van Heel, 1982
  7. ^ Saxton & Baumeister, 1982
  8. ^ Böttcher et al., 1997
  9. ^ a b Scheres, Sjors H. W.; Chen, Shaoxia (2012-07-29). "Prevention of overfitting in cryo-EM structure determination". Nature Methods. 9 (9): 853–854. doi:10.1038/nmeth.2115. ISSN 1548-7105. PMC 4912033. PMID 22842542.{{cite journal}}: CS1 maint: PMC format (link)
  10. ^ Rosenthal, Peter B.; Henderson, Richard (2003-10-31). "Optimal Determination of Particle Orientation, Absolute Hand, and Contrast Loss in Single-particle Electron Cryomicroscopy". Journal of Molecular Biology. 333 (4): 721–745. doi:10.1016/j.jmb.2003.07.013. ISSN 0022-2836.
  11. ^ a b van Heel, Marin; Schatz, Michael (2005-09-01). "Fourier shell correlation threshold criteria". Journal of Structural Biology. 151 (3): 250–262. doi:10.1016/j.jsb.2005.05.009. ISSN 1047-8477. Cite error: The named reference "vanHeel2005" was defined multiple times with different content (see the help page).
  12. ^ Sousa & Grigoreiff, 2007

References

External links

This page was last edited on 5 January 2024, at 01:50
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.