To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Reluctance motor

From Wikipedia, the free encyclopedia

Cross-section of switched reluctance machine with 6 stator and 4 rotor poles. Notice the concentrated windings on the stator poles.
Cross-section of switched reluctance machine with 6 stator and 4 rotor poles. Notice the concentrated windings on the stator poles.

A reluctance motor is a type of electric motor that induces non-permanent magnetic poles on the ferromagnetic rotor. The rotor does not have any windings. It generates torque through magnetic reluctance.

Reluctance motor subtypes include synchronous, variable, switched and variable stepping.

Reluctance motors can deliver high power density at low cost, making them attractive for many applications. Disadvantages include high torque ripple (the difference between maximum and minimum torque during one revolution) when operated at low speed, and noise due to torque ripple.[1]

Until the early twenty-first century, their use was limited by the complexity of designing and controlling them.[disputed ] Advances in theory, computer design tools, and low-cost embedded systems for control overcame these obstacles. Microcontrollers use real-time computing control algorithms to tailor drive waveforms according to rotor position and current/voltage feedback. Before the development of large-scale integrated circuits, the control electronics were prohibitively costly.

YouTube Encyclopedic

  • 1/3
    Views:
    3 960 646
    19 898
    6 968
  • SynRM | A new giant in the electrical world
  • Reluctance Motor Types and Comparison
  • Reluctance motor | reluctance motor in hindi | reluctance motor working animation | special machine

Transcription

Design and operating fundamentals

The stator consists of multiple projecting (salient) electromagnet poles, similar to a wound field brushed DC motor. The rotor consists of soft magnetic material, such as laminated silicon steel, which has multiple projections acting as salient magnetic poles through magnetic reluctance. For switched reluctance motors, the number of rotor poles is typically less than the number of stator poles, which minimizes torque ripple and prevents the poles from all aligning simultaneously—a position that cannot generate torque.

When a rotor pole is equidistant from two adjacent stator poles, the rotor pole is said to be in the "fully unaligned position". This is the position of maximum magnetic reluctance for the rotor pole. In the "aligned position", two (or more) rotor poles are fully aligned with two (or more) stator poles, (which means the rotor poles completely face the stator poles) and is a position of minimum reluctance.

When a stator pole is energized, the rotor torque is in the direction that reduces reluctance. Thus, the nearest rotor pole is pulled from the unaligned position into alignment with the stator field (a position of less reluctance). (This is the same effect used by a solenoid, or when picking up ferromagnetic metal with a magnet.) To sustain rotation, the stator field must rotate in advance of the rotor poles, thus constantly "pulling" the rotor along. Some motor variants run on 3-phase AC power (see the synchronous reluctance variant below). Most modern designs are of the switched reluctance type, because electronic commutation gives significant control advantages for motor starting, speed control and smooth operation (low torque ripple).

The inductance of each phase winding in the motor varies with position, because the reluctance also varies with position. This presents a control systems challenge.

Types

Synchronous reluctance

Synchronous reluctance motors (SynRM) have an equal number of stator and rotor poles. The projections on the rotor are arranged to introduce internal flux “barriers“, holes that direct the magnetic flux along the so-called direct axis. The number of poles must be even, typically 4 or 6.

The rotor operates at synchronous speeds without current-conducting parts. Rotor losses are minimal compared to those of an induction motor, however it doesn't normally have a lot of torque.[2][3]

Once started at synchronous speed, the motor can operate with sinusoidal voltage. Speed control requires a variable-frequency drive.

Switched reluctance or variable reluctance

The switched reluctance motor (SRM) is a form of stepper motor that uses fewer poles. The most rudimentary form of a SRM has the lowest construction cost of any electric motor because of its simple structure, and even industrial motors may have some cost reduction due to the lack of rotor windings or permanent magnets. Common uses include applications where the rotor must be held stationary for long periods, and in potentially explosive environments such as mining because it operates without a mechanical commutator.

The phase windings in an SRM are electrically isolated from each other, resulting in higher fault tolerance than inverter-driven AC induction motors. The optimal drive waveform is not a pure sinusoid, due to the non-linear torque relative to rotor displacement, and the highly position-dependent inductance of the stator phase windings.

Applications

See also

References

  1. ^ "Acoustic noise in home appliances due to torque ripple in motor drives – part 1 - Motor Drive & Control - Blogs - TI E2E Community". e2e.ti.com. Retrieved 2019-04-09.
  2. ^ Magazine, Smithsonian; Osborne, Margaret. "This 17-Year-Old Designed a Motor That Could Potentially Transform the Electric Car Industry". Smithsonian Magazine. Retrieved 2022-08-19.
  3. ^ "ETSD014 - Investigating a Novel Electric Motor Design". Society for Science. Retrieved 2022-08-19.
  4. ^ [17-Year-Old Boy’s Electric Motor Design Could Revolutionize EVs Story by Dustin Wheelen • Aug 16, 2022, CNN.com https://www.msn.com/en-ca/autos/news/17-year-old-boy-s-electric-motor-design-could-revolutionize-evs/ar-AA10Ju0j]

External links

This page was last edited on 15 May 2024, at 23:55
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.