To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Quil (instruction set architecture)

From Wikipedia, the free encyclopedia

Quil is a quantum instruction set architecture that first introduced a shared quantum/classical memory model. It was introduced by Robert Smith, Michael Curtis, and William Zeng in A Practical Quantum Instruction Set Architecture.[1] Many quantum algorithms (including quantum teleportation, quantum error correction, simulation,[2][3] and optimization algorithms[4]) require a shared memory architecture. Quil is being developed for the superconducting quantum processors developed by Rigetti Computing through the Forest quantum programming API.[5][6] A Python library called pyQuil was introduced to develop Quil programs with higher level constructs. A Quil backend is also supported by other quantum programming environments.[7][8]

YouTube Encyclopedic

  • 1/5
    Views:
    3 509
    408
    437
    17 292
    2 167
  • Liquid: A Software Design Architecture and Domain-Specific Language for Quantum Computing
  • Seismic Shifts Challenges and Opportunities in the 'Post ISA' Era of Computer Systems Design
  • Forest: An Open Source Quantum Software Development Kit
  • Rigetti Computing Software Demo: Forest
  • Controlling a quantum computer with code

Transcription

Underlying quantum abstract machine

In the paper presented by Smith, Curtis and Zeng, Quil specifies the instruction set for a Quantum Abstract Machine (QAM,) akin to a Turing machine, yet more practical for accomplishing "real-world" tasks.[1] The state of the QAM can be represented as a 6-tuple where:

  • is the (quantum) state of a fixed but arbitrary number of qubits indexed using a 0-based indexing.
  • is a classical memory of a number of classical bits indexed using a 0-based indexing.
  • a fixed but arbitrary list of static gates (quantum gates that do not depend on parameters, like the Hadamard gate.)
  • a fixed but arbitrary list of parametric gates (gates that depend on a number of complex parameters like the phase shift gate that requires an angle parameter to be completely defined.)
  • a sequence of Quil instructions to be executed, representing the program. The length of is denoted by .
  • an integer program counter pointing to the next instruction to be executed. always starts at 0 (pointing to the instruction) and ends at indicating program halting (note that the last instruction has the index .) The program counter is incremented after every instruction, except for special control flow instructions (conditional and unconditional jumps, and the special HALT instruction that halts the program by setting to .

The semantics of the QAM are defined using tensor products of Hilbert spaces and the linear maps between them.[1]

Features

Quil has support for defining possibly parametrized gates in matrix form (the language does not include a way to verify that the matrices are unitary, which is a necessary condition for the physical realizability of the defined gate) and their application on qubits. The language also supports macro-like definitions of possibly parametrized quantum circuits and their expansion, qubit measurement and recording of the outcome in classical memory, synchronization with classical computers with the WAIT instruction which pauses the execution of a Quil program until a classical program has ended its execution, conditional and unconditional branching, pragma support, as well as inclusion of files for use as libraries (a standard set of gates is provided as one of the libraries.)

Rigetti QVM

Rigetti Computing developed a quantum virtual machine in Common Lisp that simulates the defined Quantum Abstract Machine on a classical computer and is capable of the parsing and execution of Quil programs with possibly remote execution via HTTP.[9]

Example

The following example demonstrates the classical control flow needed to do quantum teleportation of the qubit in register 2 to register 1:[10][11]

# Declare classical memory
DECLARE ro BIT[2]
# Create Bell Pair
H 0
CNOT 0 1
# Teleport
CNOT 2 0
H 2
MEASURE 2 ro[0]
MEASURE 0 ro[1]
# Classically communicate measurements
JUMP-UNLESS @SKIP ro[1]
X 1
LABEL @SKIP
JUMP-UNLESS @END ro[0]
Z 1
LABEL @END

Examples of the implementations of the quantum fourier transform and the variational quantum Eigensolver are given in the paper.

References

  1. ^ a b c Smith, Robert S.; Curtis, Michael J.; Zeng, William J. (2016-08-10). "A Practical Quantum Instruction Set Architecture". arXiv:1608.03355 [quant-ph].
  2. ^ McClean, Jarrod R.; Romero, Jonathan; Babbush, Ryan; Aspuru-Guzik, Alán (2016-02-04). "The theory of variational hybrid quantum-classical algorithms". New Journal of Physics. 18 (2): 023023. arXiv:1509.04279. Bibcode:2016NJPh...18b3023M. doi:10.1088/1367-2630/18/2/023023. ISSN 1367-2630. S2CID 92988541.
  3. ^ Rubin, Nicholas C. (2016-10-21). "A Hybrid Classical/Quantum Approach for Large-Scale Studies of Quantum Systems with Density Matrix Embedding Theory". arXiv:1610.06910 [quant-ph].
  4. ^ Farhi, Edward; Goldstone, Jeffrey; Gutmann, Sam (2014-11-14). "A Quantum Approximate Optimization Algorithm". arXiv:1411.4028 [quant-ph].
  5. ^ "Rigetti Launches Full-Stack Quantum Computing Service and Quantum IC Fab". IEEE Spectrum: Technology, Engineering, and Science News. 26 June 2017. Retrieved 2017-07-06.
  6. ^ "Rigetti Quietly Releases Beta of Forest Platform for Quantum Programming in the Cloud | Quantum Computing Report". quantumcomputingreport.com. 8 March 2017. Retrieved 2017-07-06.
  7. ^ "XACC Rigetti Accelerator". ornl-qci.github.io. Retrieved 2017-07-06.
  8. ^ Doiron, Nick (2017-03-07), jsquil: Quantum computer instructions for JavaScript developers, retrieved 2017-07-06
  9. ^ The @rigetti high-performance quantum virtual machine.: rigetti/qvm, Rigetti Computing, 2019-04-26, retrieved 2019-04-28
  10. ^ Nielsen, Michael A.; Chuang, Isaac L. (2000). Quantum Computation and Quantum Information. Cambridge University Press. p. 27. ISBN 978-0-521-63503-5.
  11. ^ Computing, Rigetti (28 May 2019). "pyQuil Documentation" (PDF). pyQuil Documentaion. Retrieved 6 June 2019.

External links

This page was last edited on 23 April 2024, at 20:42
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.