To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Proton emission

From Wikipedia, the free encyclopedia

The decay of a proton rich nucleus A populates excited states of a daughter nucleus B by β+ emission or electron capture (EC). Those excited states that lie below the separation energy for protons (Sp) decay by γ emission towards the ground state of daughter B. For the higher excited states a competitive decay channel of proton emission to the granddaughter C exists, called β-delayed proton emission.

Proton emission (also known as proton radioactivity) is a rare type of radioactive decay in which a proton is ejected from a nucleus. Proton emission can occur from high-lying excited states in a nucleus following a beta decay, in which case the process is known as beta-delayed proton emission, or can occur from the ground state (or a low-lying isomer) of very proton-rich nuclei, in which case the process is very similar to alpha decay.[citation needed] For a proton to escape a nucleus, the proton separation energy must be negative (Sp < 0)—the proton is therefore unbound, and tunnels out of the nucleus in a finite time. The rate of proton emission is governed by the nuclear, Coulomb, and centrifugal potentials of the nucleus, where centrifugal potential affects a large part of the rate of proton emission. Half-life of proton emission is affected by the proton energy and its orbital angular momentum.[1] Proton emission is not seen in naturally occurring isotopes; proton emitters can be produced via nuclear reactions, usually using linear particle accelerators.

Although prompt (i.e. not beta-delayed) proton emission was observed from an isomer in cobalt-53 as early as 1969, no other proton-emitting states were found until 1981, when the proton radioactive ground states of lutetium-151 and thulium-147 were observed at experiments at the GSI in West Germany.[2] Research in the field flourished after this breakthrough, and to date more than 25 isotopes have been found to exhibit proton emission. The study of proton emission has aided the understanding of nuclear deformation, masses, and structure, and it is a pure example of quantum tunneling.

In 2002, the simultaneous emission of two protons was observed from the nucleus iron-45 in experiments at GSI and GANIL (Grand Accélérateur National d'Ions Lourds at Caen).[3] In 2005 it was experimentally determined (at the same facility) that zinc-54 can also undergo double proton decay.[4]

YouTube Encyclopedic

  • 1/3
    Views:
    584
    1 068
    318
  • Isotopes of carbon
  • Ionizing radiation
  • 63~64쪽08에너지의발생2016물리1(핵에너지)

Transcription

See also

References

  1. ^ Poenaru, Dorin N.; Rebel, Heinigerd; Wentz, Jürgen, eds. (2001). Nuclei Far from Stability and Astrophysics. Dordrecht: Springer Netherlands. pp. 79–81. doi:10.1007/978-94-010-0708-5. ISBN 978-0-7923-6937-0.
  2. ^ S. Hofmann (1996). "Chapter 3: Proton radioactivity". In Dorin N. Poseru (ed.). Nuclear Decay Modes. Bristol: Institute of Physics Publishing. pp. 143–203. ISBN 0-7503-0338-7.
  3. ^ Armand, Dominique (June 6, 2002). "A new mode of radioactive decay". CNRS. Archived from the original on 4 February 2005. Retrieved 2022-01-07.
  4. ^ Blank, Bertram; Ploszajczak, Marek (December 17, 2013). "Two-proton radioactivity". Reports on Progress in Physics. 71 (4): 046301. arXiv:0709.3797. doi:10.1088/0034-4885/71/4/046301. S2CID 119276805.

External links

This page was last edited on 5 April 2024, at 22:04
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.