To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Pre-main-sequence star

From Wikipedia, the free encyclopedia

A pre-main-sequence star (also known as a PMS star and PMS object) is a star in the stage when it has not yet reached the main sequence. Earlier in its life, the object is a protostar that grows by acquiring mass from its surrounding envelope of interstellar dust and gas. After the protostar blows away this envelope, it is optically visible, and appears on the stellar birthline in the Hertzsprung-Russell diagram. At this point, the star has acquired nearly all of its mass but has not yet started hydrogen burning (i.e. nuclear fusion of hydrogen). The star continues to contract, its internal temperature rising until it begins hydrogen burning on the zero age main sequence. This period of contraction is the pre-main sequence stage.[1][2][3][4] An observed PMS object can either be a T Tauri star, if it has fewer than 2 solar masses (M), or else a Herbig Ae/Be star, if it has 2 to 8 M. Yet more massive stars have no pre-main-sequence stage because they contract too quickly as protostars. By the time they become visible, the hydrogen in their centers is already fusing and they are main-sequence objects.

The energy source of PMS objects is gravitational contraction, as opposed to hydrogen burning in main-sequence stars. In the Hertzsprung–Russell diagram, pre-main-sequence stars with more than 0.5 M first move vertically downward along Hayashi tracks, then leftward and horizontally along Henyey tracks, until they finally halt at the main sequence. Pre-main-sequence stars with less than 0.5 M contract vertically along the Hayashi track for their entire evolution.

PMS stars can be differentiated empirically from main-sequence stars by using stellar spectra to measure their surface gravity. A PMS object has a larger radius than a main-sequence star with the same stellar mass and thus has a lower surface gravity. Although they are optically visible, PMS objects are rare relative to those on the main sequence, because their contraction lasts for only 1 percent of the time required for hydrogen fusion. During the early portion of the PMS stage, most stars have circumstellar disks, which are the sites of planet formation.

YouTube Encyclopedic

  • 1/5
    Views:
    7 119
    17 904
    615
    1 132
    929
  • Classroom Aid - Main Sequence Star Evolution
  • How Early Stars Were Created - Pre Main Sequence Stars - Universe Sandbox 2
  • Life of a Star: After Main Sequence to Red Giant
  • Convection in Main Sequence Stars
  • 39 and 40 - Post Main Sequence Evolution of Low Mass Stars

Transcription

See also

References

  1. ^ Richard B. Larson (10 September 2003). "The physics of star formation" (PDF). Reports on Progress in Physics. 66 (10): 1669–1673. arXiv:astro-ph/0306595. Bibcode:2003RPPh...66.1651L. doi:10.1088/0034-4885/66/10/r03. S2CID 18104309.
  2. ^ Neil F. Comins; William J. Kaufmann III (2011). Discovering the Universe. p. 350. ISBN 978-1-4292-5520-2.
  3. ^ Derek Ward-Thompson; Anthony P. Whitworth (2011). An Introduction to Star Formation. Cambridge University Press. p. 119. ISBN 978-1-107-62746-8.
  4. ^ Stahler, S. W.; Palla, F. (2004). The Formation of Stars. Weinheim: Wiley-VCH. ISBN 978-3-527-40559-6.
This page was last edited on 25 September 2023, at 21:34
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.