To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

Photopigments are unstable pigments that undergo a chemical change when they absorb light. The term is generally applied to the non-protein chromophore moiety of photosensitive chromoproteins, such as the pigments involved in photosynthesis and photoreception. In medical terminology, "photopigment" commonly refers to the photoreceptor proteins of the retina.[1]

YouTube Encyclopedic

  • 1/3
    Views:
    171 905
    269 708
    857 716
  • Photoreceptors (rods vs cones) | Processing the Environment | MCAT | Khan Academy
  • 031 How Rods and Cones respond to Light
  • Vision: Crash Course A&P #18

Transcription

Let's examine the difference between rods and cones in our eyes. Let me draw a very simplified schematic of a rod just to give you an idea of what it looks like. So rods actually get their name because if you look at a rod under a microscope, it actually has this elongated cell body that kind of gives it a rod shape. So a rod is a photoreceptor. What exactly is a photoreceptor? Is it a neuron? Is it a type of nerve? So, in fact, it is. It's a very specialized type of nerve that's able to take in light and convert it into a neural impulse. So inside a rod, there are a whole bunch of structures known as optic discs. And these optic discs are large, membrane-bound structures inside the rods. And there are thousands of them in an individual rod. Embedded within the membrane of each optic disc is a whole bunch of proteins, and these proteins actually absorb light and begins a phototransduction cascade that eventually leads this rod to fire an action potential that will reach the brain. Similarly, a cone gets its name because it's cone-shaped. Cones are also photoreceptors. So they're specialized nerves that have the same internal structure as a rod. So cones also have a whole bunch of these optic discs that are stacked upon one another, and embedded within each optic disc is a whole bunch of this protein. So as I mentioned over here, the protein in a rod is known as rhodopsin. In cones, it's basically the same protein. But it just has another name, and it's called photopsin. So as I mentioned, as a ray of light enters the eye, if it happens to hit a rod, and it happens to hit rhodopsin, it'll actually trigger the phototransduction cascade that results in this rod firing an action potential. This exact same process happens in a cone. So these are the major similarities between rods and cones. Now let's look at the differences. So in an average retina, there about 120 million rods. In contrast, there about 6 million cones per retina. So there are about 20 times more rods than there are cones in each eye. Another big difference between rods and cones is where they are located in the eyeball. So if I draw a very simplified diagram of an eyeball, and this is the optic nerve exiting the back of the eye. So this would be the front of the eyeball. This is the back of the eyeball. And as I mentioned in a previous video, the back of the eyeball is coated by a membrane known as the retina. So rods are actually found in the periphery of the eyeball. So they're found in this area over here and in this area over here. And there's actually a region of the retina, right about here, that actually dimples in. And this region is known as the fovea, and cones are mostly concentrated in this region in front of the fovea. So rods are mostly found in the periphery of the eye, whereas cones are mainly found near the fovea. Another big difference between rods and cones is that rods do not produce color vision, whereas cones do. So rods are very sensitive to light. In fact, they are 1,000 times more sensitive to light than codes are. For this reason, rods are really good at detecting light. So they're basically responsible for telling us whether or not light is present. Another way to think of this would be black and white vision. On the other hand, cones are not as sensitive. But they do result in the detection of light. So they result in color vision. And in fact, there are three different types of cones. So there are red cones, which make up about 60% of all cones in the eye. There are green cones, which make up about 30% of all cones in the eye. And there are blue cones, which make up about 10% of all cones in the eye. Another major difference between rods and cones is their recovery time. So rods have a very slow recovery time, whereas cones have a very fast recovery time. So what I mean by slow and fast recovery times is that as soon as a rod is activated by a ray of light-- so let's imagine that a ray of light comes in and activates this rod, and it fires an action potential. It takes a lot longer for the rod to be able to fire another action potential than it does for a cone, and you've actually experienced this. So if you've ever been outside, playing soccer or football, and you run inside to get a cup of water, there's a big change in illumination, yet you don't stub your toe. You're able to transition from outside to inside really quickly. That's because cones are able to rapidly adapt to changes in illumination, whereas rods take a lot longer. So at night, when you walk into a dark room, it takes a while for your eyes to get adjusted to the dark. And that's because the rods need to be reactivated, reset, in order for you to be able to use them to see anything.

Photosynthetic pigments

Photosynthetic pigments convert light into biochemical energy. Examples for photosynthetic pigments are chlorophyll, carotenoids and phycobilins.[2] These pigments enter a high-energy state upon absorbing a photon which they can release in the form of chemical energy. This can occur via light-driven pumping of ions across a biological membrane (e.g. in the case of the proton pump bacteriorhodopsin) or via excitation and transfer of electrons released by photolysis (e.g. in the photosystems of the thylakoid membranes of plant chloroplasts).[2] In chloroplasts, the light-driven electron transfer chain in turn drives the pumping of protons across the membrane.[2]

Photoreceptor pigments

The pigments in photoreceptor proteins either change their conformation or undergo photoreduction when they absorb a photon.[3] This change in the conformation or redox state of the chromophore then affects the protein conformation or activity and triggers a signal transduction cascade.[3]

Examples of photoreceptor pigments include:[4]

Photopigments of the vertebrate retina

In medical terminology, the term photopigment is applied to opsin-type photoreceptor proteins, specifically rhodopsin and photopsins, the photoreceptor proteins in the retinal rods and cones of vertebrates that are responsible for visual perception, but also melanopsin and others.[5]

See also

References

  1. ^ Epstein, R.J. (2003). Human Molecular Biology: An Introduction to the Molecular Basis of Health and Disease. Cambridge University Press. p. 453.
  2. ^ a b c Blankenship (2014). Molecular Mechanisms of Photosynthesis (2nd ed.). John Wiley & Sons.
  3. ^ a b Nelson, Lehninger, Cox (2008). Lehninger Principles of Biochemistry (5th ed.). Macmillan. pp. 471–523.{{cite book}}: CS1 maint: multiple names: authors list (link)
  4. ^ Alberts; et al. (2014). Molecular Biology of the Cell (6th ed.). Garland Science.
  5. ^ Williams (2004). Photoreceptor Cell Biology and Inherited Retinal Degenerations. World Scientific. pp. 89–145.
This page was last edited on 16 July 2021, at 02:33
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.