To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Valuation of options

From Wikipedia, the free encyclopedia

In finance, a price (premium) is paid or received for purchasing or selling options. This article discusses the calculation of this premium in general. For further detail, see: Mathematical finance § Derivatives pricing: the Q world for discussion of the mathematics; Financial engineering for the implementation; as well as Financial modeling § Quantitative finance generally.

YouTube Encyclopedic

  • 1/5
    Views:
    8 011
    73 638
    19 437 983
    1 783 130
    28 873
  • Pricing Options with Mathematical Models | CaltechX on edX | Course About Video
  • Engineering Mathematics 1 Intro Video
  • Memorization Trick for Graphing Functions Part 1 | Algebra Math Hack #shorts #math #school
  • Percent Hack- - Math Shortcut tricks
  • Lec 14 | MIT 18.086 Mathematical Methods for Engineers II

Transcription

JAKSA CVITANIC: Hi, and welcome to the course, Pricing Options with Mathematical Models. My name is Jaksa Cvitanic, and I'm a Professor of Mathematical Finance at Caltech. I've been teaching courses of this type for more than 20 years at various universities, and it's very exciting for me to do it differently with you as my online audience. I hope that, like many of my former students, you will use what you learn in this course in building a successful career in banking, or risk management, or trading, or just as a step towards learning more about this fascinating subject. When I first immigrated to the United States to do my Ph.D. Studies, I hardly knew what a stock was or what a bond was, not to mention an option. But when I started learning about financial derivatives, I was completely fascinated by use of the sophisticated mathematics in Wall Street application. And I hope that you will be too because this fascination still remains for me. There are two main objectives in this course. The first one is to learn about economics of risk-neutral pricing, and that we can do already with simple discrete-time models. The second objective is to learn about the basics of continuous-time models. This means in particular that we will study, in detail, the famous Black-Scholes-Merton Model. The Black-Scholes-Merton Model is the benchmark model for pricing any financial instrument on Wall Street. Learning about the model, you will get enough knowledge to learn more about this topic either on your own or taking other courses. The model is probably the most successful economics or mathematics model used in economics or finance ever. It earned a Nobel Prize for its creators. This part of the course is technical and it requires a certain level of mathematical sophistication. Because of that, I urge you to take the prerequisites assessment, which will be available on the course website. I teach the same course to Caltech undergraduates of the upper level seniors and juniors, but it's also not too far away from master's level courses at various financial engineering programs. There are some issues, which are very interesting, but that we'll not have time to cover in this course, including estimation and calibration of model parameters and mathematical methods. Nevertheless, you should gain enough knowledge to be able to learn about those topics on your own. I hope you will find the experience rewarding. I know I will. Thank you for listening. Bye.

Premium components

This price can be split into two components: intrinsic value, and time value (also called "extrinsic value").[1]

Intrinsic value

The intrinsic value is the difference between the underlying spot price and the strike price, to the extent that this is in favor of the option holder. For a call option, the option is in-the-money if the underlying spot price is higher than the strike price; then the intrinsic value is the underlying price minus the strike price. For a put option, the option is in-the-money if the strike price is higher than the underlying spot price; then the intrinsic value is the strike price minus the underlying spot price. Otherwise the intrinsic value is zero.

For example, when a DJI call (bullish/long) option is 18,000 and the underlying DJI Index is priced at $18,050 then there is a $50 advantage even if the option were to expire today. This $50 is the intrinsic value of the option.

In summary, intrinsic value:

= current stock price − strike price (call option)
= strike price − current stock price (put option)

Extrinsic (Time) value

The option premium is always greater than the intrinsic value up to the expiration event. This extra money is for the risk which the option writer/seller is undertaking. This is called the time value.

Time value is the amount the option trader is paying for a contract above its intrinsic value, with the belief that prior to expiration the contract value will increase because of a favourable change in the price of the underlying asset. The longer the length of time until the expiry of the contract, the greater the time value. So,

Time value = option premium − intrinsic value

Other factors affecting premium

There are many factors which affect option premium. These factors affect the premium of the option with varying intensity. Some of these factors are listed here:

  • Price of the underlying: Any fluctuation in the price of the underlying (stock/index/commodity) obviously has the largest effect on premium of an option contract. An increase in the underlying price increases the premium of call option and decreases the premium of put option. Reverse is true when underlying price decreases.
  • Strike price: How far is the strike price from spot also affects option premium. Say, if NIFTY goes from 5000 to 5100 the premium of 5000 strike and of 5100 strike will change a lot compared to a contract with strike of 5500 or 4700.
  • Volatility of underlying: Underlying security is a constantly changing entity. The degree by which its price fluctuates can be termed as volatility. So a share which fluctuates 5% on either side on daily basis is said to have more volatility than e.g. stable blue chip shares whose fluctuation is more benign at 2–3%. Volatility affects calls and puts alike. Higher volatility increases the option premium because of greater risk it brings to the seller.
  • Payment of Dividend: Payment of Dividend does not have direct impact on value of derivatives but it does have indirect impact through stock price. We know that if dividend is paid, stock goes ex-dividend therefore price of stock will go down which will result into increase in Put premium and decrease in Call premium.

Apart from above, other factors like bond yield (or interest rate) also affect the premium. This is because the money invested by the seller can earn this risk free income in any case and hence while selling option; he has to earn more than this because of higher risk he is taking.

Pricing models

Because the values of option contracts depend on a number of different variables in addition to the value of the underlying asset, they are complex to value. There are many pricing models in use, although all essentially incorporate the concepts of rational pricing (i.e. risk neutrality), moneyness, option time value and put–call parity.

The valuation itself combines (1) a model of the behavior ("process") of the underlying price with (2) a mathematical method which returns the premium as a function of the assumed behavior.

The models in (1) range from the (prototypical) Black–Scholes model for equities, to the Heath–Jarrow–Morton framework for interest rates, to the Heston model where volatility itself is considered stochastic. See Asset pricing for a listing of the various models here.

As regards (2), the implementation, the most common approaches are:

The Black model extends Black-Scholes from equity to options on futures, bond options, swaptions, (i.e. options on swaps), and interest rate cap and floors (effectively options on the interest rate).

The final four are numerical methods, usually requiring sophisticated derivatives-software, or a numeric package such as MATLAB. For these, the result is calculated as follows, even if the numerics differ: (i) a risk-neutral distribution is built for the underlying price over time (for non-European options, at least at each exercise date) via the selected model, as calibrated to the market; (ii) the option's payoff-value is determined at each of these times, for each of these prices; (iii) the payoffs are discounted at the risk-free rate, and then averaged. For the analytic methods, these same are subsumed into a single probabilistic result; see Black–Scholes model § Interpretation.

Post crisis

After the financial crisis of 2007–2008, counterparty credit risk considerations were brought into the valuation, previously using the risk-free rate to discount the payoff. Here, there are [2] three major developments re option pricing:

  1. For discounting, the overnight indexed swap (OIS) curve is typically used for the "risk free rate", as opposed to LIBOR as previously (LIBOR is due to be phased out by the end of 2021, with replacements including SOFR and TONAR); see Interest rate swap § Valuation and pricing. Relatedly, the "Multi-curve framework" is now standard in the valuation of interest rate derivatives and for fixed income analysis more generally.
  2. As mentioned, option pricing models must consider the volatility surface, and the numerics will then require a zeroth calibration step, such that observed prices are returned before new prices and / or "greeks" can be calculated. To do so, banks will apply local- or stochastic volatility models, such as Heston mentioned above (or less common, implied trees).
  3. The risk neutral value, no matter how determined, is adjusted for the impact of counterparty credit risk via a credit valuation adjustment, or CVA, as well as various of the other XVA which may also be appended.

References

  1. ^ "Extrinsic Value Definition | Britannica Money". www.britannica.com. Retrieved 2023-05-09.
  2. ^ Derivatives Pricing after the 2007-2008 Crisis: How the Crisis Changed the Pricing Approach, Didier Kouokap Youmbi, Bank of EnglandPrudential Regulation Authority
This page was last edited on 6 February 2024, at 13:01
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.