To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Omega-regular language

From Wikipedia, the free encyclopedia

The ω-regular languages are a class of ω-languages that generalize the definition of regular languages to infinite words.


YouTube Encyclopedic

  • 1/1
    Views:
    496
  • D4.D — Timed games and deterministic separability

Transcription

Formal definition

An ω-language L is ω-regular if it has the form

  • Aω where A is a regular language not containing the empty string
  • AB, the concatenation of a regular language A and an ω-regular language B (Note that BA is not well-defined)
  • AB where A and B are ω-regular languages (this rule can only be applied finitely many times)

The elements of Aω are obtained by concatenating words from A infinitely many times. Note that if A is regular, Aω is not necessarily ω-regular, since A could be for example {ε}, the set containing only the empty string, in which case Aω=A, which is not an ω-language and therefore not an ω-regular language.

It is a straightforward consequence of the definition that the ω-regular languages are precisely the ω-languages of the form A1B1ω ∪ ... ∪ AnBnω for some n, where the Ais and Bis are regular languages and the Bis do not contain the empty string.

Equivalence to Büchi automaton

Theorem: An ω-language is recognized by a Büchi automaton if and only if it is an ω-regular language.

Proof: Every ω-regular language is recognized by a nondeterministic Büchi automaton; the translation is constructive. Using the closure properties of Büchi automata and structural induction over the definition of ω-regular language, it can be easily shown that a Büchi automaton can be constructed for any given ω-regular language.

Conversely, for a given Büchi automaton A = (Q, Σ, δ, I, F), we construct an ω-regular language and then we will show that this language is recognized by A. For an ω-word w = a1a2... let w(i,j) be the finite segment ai+1...aj-1aj of w. For every q, q'Q, we define a regular language Lq,q' that is accepted by the finite automaton (Q, Σ, δ, q, {q'}).

Lemma: We claim that the Büchi automaton A recognizes the language qI,q'∈F Lq,q' (Lq',q' − {ε} )ω.
Proof: Let's suppose word wL(A) and q0,q1,q2,... is an accepting run of A on w. Therefore, q0 is in I and there must be a state q' in F such that q' occurs infinitely often in the accepting run. Let's pick the strictly increasing infinite sequence of indexes i0,i1,i2... such that, for all k≥0, qik is q'. Therefore, w(0,i0)∈Lq0,q' and, for all k≥0, w(ik,ik+1)∈Lq',q' . Therefore, wLq0,q' (Lq',q' )ω.
Conversely, suppose wLq,q' (Lq',q' − {ε} )ω for some qI and q'∈F. Therefore, there is an infinite and strictly increasing sequence i0,i1,i2... such that w(0,i0) ∈ Lq,q' and, for all k≥0, w(ik,ik+1)∈Lq',q' . By definition of Lq,q', there is a finite run of A from q to q' on word w(0,i0). For all k≥0, there is a finite run of A from q' to q' on word w(ik,ik+1). By this construction, there is a run of A, which starts from q and in which q' occurs infinitely often. Hence, wL(A).

Equivalence to Monadic second-order logic

Büchi showed in 1962 that ω-regular languages are precisely the ones definable in a particular monadic second-order logic called S1S.

Bibliography

  • Wolfgang Thomas, "Automata on infinite objects." In Jan van Leeuwen, editor, Handbook of Theoretical Computer Science, volume B: Formal Models and Semantics, pages 133-192. Elsevier Science Publishers, Amsterdam, 1990.
This page was last edited on 3 August 2022, at 16:59
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.