To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Numeral system

From Wikipedia, the free encyclopedia

Numbers written in different numeral systems

A numeral system is a writing system for expressing numbers; that is, a mathematical notation for representing numbers of a given set, using digits or other symbols in a consistent manner.

The same sequence of symbols may represent different numbers in different numeral systems. For example, "11" represents the number eleven in the decimal numeral system (today, the most common system globally), the number three in the binary numeral system (used in modern computers), and the number two in the unary numeral system (used in tallying scores).

The number the numeral represents is called its value. Not all number systems can represent the same set of numbers; for example, Roman numerals cannot represent the number zero.

Ideally, a numeral system will:

  • Represent a useful set of numbers (e.g. all integers, or rational numbers)
  • Give every number represented a unique representation (or at least a standard representation)
  • Reflect the algebraic and arithmetic structure of the numbers.

For example, the usual decimal representation gives every nonzero natural number a unique representation as a finite sequence of digits, beginning with a non-zero digit.

Numeral systems are sometimes called number systems, but that name is ambiguous, as it could refer to different systems of numbers, such as the system of real numbers, the system of complex numbers, the system of p-adic numbers, etc. Such systems are, however, not the topic of this article.

YouTube Encyclopedic

  • 1/5
    Views:
    517 414
    702 487
    497 417
    402 308
    102 366
  • Introduction to number systems and binary | Pre-Algebra | Khan Academy
  • A brief history of numerical systems - Alessandra King
  • Math - What is Indian Numeral System - English
  • Hexadecimal number system | Applying mathematical reasoning | Pre-Algebra | Khan Academy
  • Number System

Transcription

- [Voiceover] For as long as human beings have been around we've been counting things, and we've been looking for ways to keep track and represent those things that we counted. So, for example if you were an early human and you were trying to keep track of the days since it last rained you might say okay let's see it didn't rain today so one day has gone by, and we now use the word one, but they might have not used it back then. Now another day goes by. Then another day goes by. Then another day goes by. Another day goes by. Another day goes by. Another day goes by, then it rained. And so when his friend comes he says, "Well, how long has it been since we last rained." Well you would say, "Well, this is how many days it's been." And your friend would say, "Okay, I think I have a general sense of that." And at some point they probably realized that it's useful to have names for these. So they would call this one, two, three, four, five, six, seven. Obviously every language in the world has different names for these. I'm sure there are lost languages that had other names for them. But very quickly you start to realize that this is a pretty bulky way of representing numbers. One it takes a long time to write down. It takes up a lot of space, and then later if someone wants to read the number they have to sit here and count. It's hard enough with seven, but you could imagine if there were what we call 27 of it, or 1000 of it. Then it would take up, possibly, a whole page and even when you counted you might make a mistake. And to solve this human beings have invented number systems. And it's something that we take for granted. You might say, "Oh, isn't that just the way you've always counted? But hopefully over the course of this video you'll start to appreciate the beauty of a number system and to realize our number system isn't the only number system that is around. The number system that most of us are familiar with is the base 10 number system. Often called the decimal, the decimal number system. And why 10? Well probably because we have 10 fingers. Or most of us have 10 fingers. So, it was very natural to think in terms of bundles of 10 or to have 10 symbols. So however many bundles you have you can use your fingers and eventually your symbols to think about how many there are. And since we needed 10 symbols we came up with zero, one, two, three, four, five, six, seven, eight, nine. These 10 digits, these are our 10 symbols that we use in the base 10 system. To just give us a little bit of a reminder how we use them imagine the number 231. So, 231. 231. What does this represent? Well, what's neat about number systems is we have place value. This place all the way to the right, this is the ones place. This is the ones place. This literally means one, one. One bundle of one. So, this is one, one right over here. This right over here, this is in the 10s place. This is in the 10s place. This three here, literally means three 10s. So this literally means three 10s. And this two here, this two here is in the 100s place. It's in the 100s place. So, this represent two 100s. You add them together and once again I'm still thinking in base 10, you'd get 231. This is two 100s plus three 10s plus one. In our base 10 system notice every time we move to the left we're thinking in bundles of 10 of the space to the right. So, this is the ones place. You multiply by 10, you go to the 10s place. You want to go to the next place you multiply by 10 again. You get the 100s place. If you're familiar with exponents, one is the same thing as 10 to the zero power. 10 is the same thing as 10 to the first power. So this is the 10s place. Three tens. And 100 is the same thing as 10 to the second power. Obviously we could keep going on and on and on and on and on. That is the power of the base 10 system. So, you might be curious now. "Well, what if this wasn't 10 here? What if we did, let's just go as simple as we can. You can almost view this as a base one system. You only have one symbol right over here. But what if we went to something slightly more complex, a base two system. You'd be happy to know that not only can we do this, but the base two system often called the binary system. This is called the decimal system. The base two system often called the binary system is the basis of all modern computing. It's the underlying mathematics and operations that computers perform are based on binary. And in binary you have two symbols. You have zero and you have one. The reason why this is useful for computation is because all the hardware that we use to make our modern computers, all of the transistors and the logic gates they either result in an on or an off state. On or an off state. And so what we do is when you use your calculator or whatever you might be operating in base 10, but underlying everything it is doing the operations in binary. But you might say well how do we actually think in terms of binary? Well, we can construct similar places here, but instead of them being powers of 10 they're going to be powers of two. So, let's set up some places here. So, all the way on the right two to the zero power is still one. So we can still call that the ones place. Then we can move to the left of that. We can move to the left of that. That would be two to the first power. So we could call that the twos place, and I can even write it out if I want. Twos place instead of the 10s place. Then I could keep going. Instead of this space being the 10 to the second or the 100s place, it will be the two to the second, or the fours place. And I can keep going. I encourage you actually to pause the video and try to build this out for yourself. What would this be? Well this would be two to the third, or the eights place. Notice every time we're doing this we're multiplying by two. Everytime we go to the left, just like we multiplied by 10 here. So notice everywhere you see this 10s we're now dealing with twos. Let's keep going. Let's keep going and then we can actually represent this number using binary. So, let's do that. So, this right over here I've already used that color. This right over here, this is two to the fourth. We could call that the 16s place. Then we could have -- I'll reuse some of these colors. This is two to the fifth. We could call this the 32s place. Then we can go two to the sixth. We can call that, multiply by two again, or two to the six is 64. So this is the 64s place. Tells us how many 64s we have. Zero or one 64s. We'll see that in a second. Then we can go over here. This would be two to the seventh. That would be the 128s place. And we can obviously keep going on and on and on, but this should be enough for me to represent this number. In future videos I will show you how to do that, but let's actually represent the number. It turns out that this number in decimal can be represented as 11100111 in binary. What does this mean? This means you have one 128 plus one 64, plus one 32, plus no 16s, plus no eights, plus one four, plus one two, plus one one. So you can see that these are going to be the same thing. Notice, this is one 128. So it's 128, plus 64, plus 32. We have zero 16s, zero eights. So we're not going to add those. Plus four, one four. Plus one two. Plus one one. And add these together, and once again when we're doing this, when I'm writing it this way I'm kind of using the number system that we're most familiar with. We're most used to doing the operations in, but when you do it you will see that this is the exact same number as 231. This is just another representation. One isn't better than the other. The only reason why I converted this is this is what I'm used to thinking in. It's what I'm used to doing operations in. So, hopefully you find that pretty interesting. To me, this kind of opened my mind to the power of even our decimal system. In future videos we'll explore other number systems. The most used ones, base 10 is used very heavily, binary and there's also hexadecimal where you don't have two digits or not 10 digits, but you have 16 digits. And we'll explore those in future videos and how to convert between or rewrite the the different representations and different bases.

Main numeral systems

The most commonly used system of numerals is decimal. Indian mathematicians are credited with developing the integer version, the Hindu–Arabic numeral system.[1] Aryabhata of Kusumapura developed the place-value notation in the 5th century and a century later Brahmagupta introduced the symbol for zero. The system slowly spread to other surrounding regions like Arabia due to their commercial and military activities with India. Middle-Eastern mathematicians extended the system to include negative powers of 10 (fractions), as recorded in a treatise by Syrian mathematician Abu'l-Hasan al-Uqlidisi in 952–953, and the decimal point notation was introduced[when?] by Sind ibn Ali, who also wrote the earliest treatise on Arabic numerals. The Hindu–Arabic numeral system then spread to Europe due to merchants trading, and the digits used in Europe are called Arabic numerals, as they learned them from the Arabs.

The simplest numeral system is the unary numeral system, in which every natural number is represented by a corresponding number of symbols. If the symbol / is chosen, for example, then the number seven would be represented by ///////. Tally marks represent one such system still in common use. The unary system is only useful for small numbers, although it plays an important role in theoretical computer science. Elias gamma coding, which is commonly used in data compression, expresses arbitrary-sized numbers by using unary to indicate the length of a binary numeral.

The unary notation can be abbreviated by introducing different symbols for certain new values. Very commonly, these values are powers of 10; so for instance, if / stands for one, − for ten and + for 100, then the number 304 can be compactly represented as +++ //// and the number 123 as + − − /// without any need for zero. This is called sign-value notation. The ancient Egyptian numeral system was of this type, and the Roman numeral system was a modification of this idea.

More useful still are systems which employ special abbreviations for repetitions of symbols; for example, using the first nine letters of the alphabet for these abbreviations, with A standing for "one occurrence", B "two occurrences", and so on, one could then write C+ D/ for the number 304. This system is used when writing Chinese numerals and other East Asian numerals based on Chinese. The number system of the English language is of this type ("three hundred [and] four"), as are those of other spoken languages, regardless of what written systems they have adopted. However, many languages use mixtures of bases, and other features, for instance 79 in French is soixante dix-neuf (60 + 10 + 9) and in Welsh is pedwar ar bymtheg a thrigain (4 + (5 + 10) + (3 × 20)) or (somewhat archaic) pedwar ugain namyn un (4 × 20 − 1). In English, one could say "four score less one", as in the famous Gettysburg Address representing "87 years ago" as "four score and seven years ago".

More elegant is a positional system, also known as place-value notation. Again working in base 10, ten different digits 0, ..., 9 are used and the position of a digit is used to signify the power of ten that the digit is to be multiplied with, as in 304 = 3×100 + 0×10 + 4×1 or more precisely 3×102 + 0×101 + 4×100. Zero, which is not needed in the other systems, is of crucial importance here, in order to be able to "skip" a power. The Hindu–Arabic numeral system, which originated in India and is now used throughout the world, is a positional base 10 system.

Arithmetic is much easier in positional systems than in the earlier additive ones; furthermore, additive systems need a large number of different symbols for the different powers of 10; a positional system needs only ten different symbols (assuming that it uses base 10).[2]

The positional decimal system is presently universally used in human writing. The base 1000 is also used (albeit not universally), by grouping the digits and considering a sequence of three decimal digits as a single digit. This is the meaning of the common notation 1,000,234,567 used for very large numbers.

In computers, the main numeral systems are based on the positional system in base 2 (binary numeral system), with two binary digits, 0 and 1. Positional systems obtained by grouping binary digits by three (octal numeral system) or four (hexadecimal numeral system) are commonly used. For very large integers, bases 232 or 264 (grouping binary digits by 32 or 64, the length of the machine word) are used, as, for example, in GMP.

In certain biological systems, the unary coding system is employed. Unary numerals used in the neural circuits responsible for birdsong production.[3] The nucleus in the brain of the songbirds that plays a part in both the learning and the production of bird song is the HVC (high vocal center). The command signals for different notes in the birdsong emanate from different points in the HVC. This coding works as space coding which is an efficient strategy for biological circuits due to its inherent simplicity and robustness.

The numerals used when writing numbers with digits or symbols can be divided into two types that might be called the arithmetic numerals (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) and the geometric numerals (1, 10, 100, 1000, 10000 ...), respectively. The sign-value systems use only the geometric numerals and the positional systems use only the arithmetic numerals. A sign-value system does not need arithmetic numerals because they are made by repetition (except for the Ionic system), and a positional system does not need geometric numerals because they are made by position. However, the spoken language uses both arithmetic and geometric numerals.

In some areas of computer science, a modified base k positional system is used, called bijective numeration, with digits 1, 2, ..., k (k ≥ 1), and zero being represented by an empty string. This establishes a bijection between the set of all such digit-strings and the set of non-negative integers, avoiding the non-uniqueness caused by leading zeros. Bijective base-k numeration is also called k-adic notation, not to be confused with p-adic numbers. Bijective base 1 is the same as unary.

Positional systems in detail

In a positional base b numeral system (with b a natural number greater than 1 known as the radix), b basic symbols (or digits) corresponding to the first b natural numbers including zero are used. To generate the rest of the numerals, the position of the symbol in the figure is used. The symbol in the last position has its own value, and as it moves to the left its value is multiplied by b.

For example, in the decimal system (base 10), the numeral 4327 means (4×103) + (3×102) + (2×101) + (7×100), noting that 100 = 1.

In general, if b is the base, one writes a number in the numeral system of base b by expressing it in the form anbn + an − 1bn − 1 + an − 2bn − 2 + ... + a0b0 and writing the enumerated digits anan − 1an − 2 ... a0 in descending order. The digits are natural numbers between 0 and b − 1, inclusive.

If a text (such as this one) discusses multiple bases, and if ambiguity exists, the base (itself represented in base 10) is added in subscript to the right of the number, like this: numberbase. Unless specified by context, numbers without subscript are considered to be decimal.

By using a dot to divide the digits into two groups, one can also write fractions in the positional system. For example, the base 2 numeral 10.11 denotes 1×21 + 0×20 + 1×2−1 + 1×2−2 = 2.75.

In general, numbers in the base b system are of the form:

The numbers bk and bk are the weights of the corresponding digits. The position k is the logarithm of the corresponding weight w, that is . The highest used position is close to the order of magnitude of the number.

The number of tally marks required in the unary numeral system for describing the weight would have been w. In the positional system, the number of digits required to describe it is only , for k ≥ 0. For example, to describe the weight 1000 then four digits are needed because . The number of digits required to describe the position is (in positions 1, 10, 100,... only for simplicity in the decimal example).

A number has a terminating or repeating expansion if and only if it is rational; this does not depend on the base. A number that terminates in one base may repeat in another (thus 0.310 = 0.0100110011001...2). An irrational number stays aperiodic (with an infinite number of non-repeating digits) in all integral bases. Thus, for example in base 2, π = 3.1415926...10 can be written as the aperiodic 11.001001000011111...2.

Putting overscores, n, or dots, , above the common digits is a convention used to represent repeating rational expansions. Thus:

14/11 = 1.272727272727... = 1.27   or   321.3217878787878... = 321.32178.

If b = p is a prime number, one can define base-p numerals whose expansion to the left never stops; these are called the p-adic numbers.

It is also possible to define a variation of base b in which digits may be positive or negative; this is called a signed-digit representation.

Generalized variable-length integers

More general is using a mixed radix notation (here written little-endian) like for , etc.

This is used in Punycode, one aspect of which is the representation of a sequence of non-negative integers of arbitrary size in the form of a sequence without delimiters, of "digits" from a collection of 36: a–z and 0–9, representing 0–25 and 26–35 respectively. There are also so-called threshold values () which are fixed for every position in the number. A digit (in a given position in the number) that is lower than its corresponding threshold value means that it is the most-significant digit, hence in the string this is the end of the number, and the next symbol (if present) is the least-significant digit of the next number.

For example, if the threshold value for the first digit is b (i.e. 1) then a (i.e. 0) marks the end of the number (it has just one digit), so in numbers of more than one digit, first-digit range is only b–9 (i.e. 1–35), therefore the weight b1 is 35 instead of 36. More generally, if tn is the threshold for the n-th digit, it is easy to show that . Suppose the threshold values for the second and third digits are c (i.e. 2), then the second-digit range is a–b (i.e. 0–1) with the second digit being most significant, while the range is c–9 (i.e. 2–35) in the presence of a third digit. Generally, for any n, the weight of the (n + 1)-th digit is the weight of the previous one times (36 − threshold of the n-th digit). So the weight of the second symbol is . And the weight of the third symbol is .

So we have the following sequence of the numbers with at most 3 digits:

a (0), ba (1), ca (2), ..., 9a (35), bb (36), cb (37), ..., 9b (70), bca (71), ..., 99a (1260), bcb (1261), ..., 99b (2450).

Unlike a regular n-based numeral system, there are numbers like 9b where 9 and b each represent 35; yet the representation is unique because ac and aca are not allowed – the first a would terminate each of these numbers.

The flexibility in choosing threshold values allows optimization for number of digits depending on the frequency of occurrence of numbers of various sizes.

The case with all threshold values equal to 1 corresponds to bijective numeration, where the zeros correspond to separators of numbers with digits which are non-zero.

See also

References

  1. ^ David Eugene Smith; Louis Charles Karpinski (1911). The Hindu–Arabic numerals. Ginn and Company.
  2. ^ Chowdhury, Arnab. Design of an Efficient Multiplier using DBNS. GIAP Journals. ISBN 978-93-83006-18-2.
  3. ^ Fiete, I. R.; Seung, H. S. (2007). "Neural network models of birdsong production, learning, and coding". In Squire, L.; Albright, T.; Bloom, F.; Gage, F.; Spitzer, N. New Encyclopedia of Neuroscience.

Sources

External links

This page was last edited on 28 March 2024, at 23:15
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.