To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Non-separable wavelet

From Wikipedia, the free encyclopedia

Non-separable wavelets are multi-dimensional wavelets that are not directly implemented as tensor products of wavelets on some lower-dimensional space. They have been studied since 1992.[1] They offer a few important advantages. Notably, using non-separable filters leads to more parameters in design, and consequently better filters.[2] The main difference, when compared to the one-dimensional wavelets, is that multi-dimensional sampling requires the use of lattices (e.g., the quincunx lattice). The wavelet filters themselves can be separable or non-separable regardless of the sampling lattice. Thus, in some cases, the non-separable wavelets can be implemented in a separable fashion. Unlike separable wavelet, the non-separable wavelets are capable of detecting structures that are not only horizontal, vertical or diagonal (show less anisotropy).

Examples

References

  1. ^ J. Kovacevic and M. Vetterli, "Nonseparable multidimensional perfect reconstruction filter banks and wavelet bases for Rn," IEEE Trans. Inf. Theory, vol. 38, no. 2, pp. 533–555, Mar. 1992.
  2. ^ J. Kovacevic and M. Vetterli, "Nonseparable two- and three-dimensional wavelets," IEEE Transactions on Signal Processing, vol. 43, no. 5, pp. 1269–1273, May 1995.
  3. ^ G. Uytterhoeven and A. Bultheel, "The Red-Black Wavelet Transform," in IEEE Signal Processing Symposium, pp. 191–194, 1998.
  4. ^ M. N. Do and M. Vetterli, "The contourlet transform: an efficient directional multiresolution image representation," IEEE Transactions on Image Processing, vol. 14, no. 12, pp. 2091–2106, Dec. 2005.
  5. ^ G. Kutyniok and D. Labate, "Shearlets: Multiscale Analysis for Multivariate Data," 2012.
  6. ^ V. Velisavljevic, B. Beferull-Lozano, M. Vetterli and P. L. Dragotti, "Directionlets: anisotropic multi-directional representation with separable filtering," IEEE Trans. on Image Proc., Jul. 2006.
  7. ^ E. P. Simoncelli and W. T. Freeman, "The Steerable Pyramid: A Flexible Architecture for Multi-Scale Derivative Computation," in IEEE Second Int'l Conf on Image Processing. Oct. 1995.
  8. ^ D. Barina, M. Kula and P. Zemcik, "Parallel wavelet schemes for images," J Real-Time Image Proc, vol. 16, no. 5, pp. 1365–1381, Oct. 2019.


This page was last edited on 23 June 2020, at 14:47
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.