To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Nitrogen monofluoride

From Wikipedia, the free encyclopedia

Nitrogen monofluoride
Names
Other names
Fluoroimidogen
Identifiers
3D model (JSmol)
  • InChI=1S/FN/c1-2
    Key: CMUBZTZNXGBJMQ-UHFFFAOYSA-N
  • [F+]=[N-]
Properties
FN
Molar mass 33.005 g·mol−1
Related compounds
Dioxygen, nitroxyl anion
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Nitrogen monofluoride (fluoroimidogen) is a metastable species that has been observed in laser studies. It is isoelectronic with O2. Like boron monofluoride, it is an instance of the rare multiply-bonded fluorine atom.[1][2] It is unstable with respect to its formal dimer, dinitrogen difluoride, as well as to its elements, nitrogen and fluorine.

Nitrogen monofluoride is produced when radical species (H, O, N, CH3) abstracts a fluorine atom from nitrogen difluoride (NF2). Stoichiometrically, the reaction is extremely efficient, regenerating a radical for long-lasting chain propagation. However, radical impurities in the end product also catalyze that product's decomposition. Azide decomposition offers a less-efficient but more pure technique: fluorine azide (which can be formed in situ via reaction of atomic fluorine with hydrazoic acid) decomposes upon shock into NF and N2.[3][4]

Many NF-producing reactions give the product in an excited state with characteristic chemiluminescence. They have thus been investigated for development as a chemical laser.[4][5]

References

  1. ^ Davis, Steven J.; Rawlins, Wilson T.; Piper, Lawrence G. (Feb 1989). "Rate coefficient for the H + NF(a1Δ) reaction" (PDF). The Journal of Physical Chemistry. 93 (3). American Chemical Society: 1078–1082. doi:10.1021/j100340a013. ISSN 0022-3654 – via MetastableStates.com.
  2. ^ Harbison, G. S. (2002). "The Electric Dipole Polarity of the Ground and Low-lying Metastable Excited States of NF". Journal of the American Chemical Society. 124 (3): 366–367. doi:10.1021/ja0159261. PMID 11792193.
  3. ^ Gmelin-lnstitut für Anorganische Chemie der Max-Planck-Gesellschaft zur Förderung der Wissenschaften (2013). Gmelin Handbook of Inorganic Chemistry: F Fluorine: Compounds with Oxygen and Nitrogen. Springer Science & Business Media. pp. 263–271. ISBN 9783662063392.
  4. ^ a b Avizonis, Petras V. (2012). "Chemically Pumped Electronic Transition Lasers". In Onorato, Michele (ed.). Gas Flow and Chemical Lasers. Plenum Press. pp. 1–19. doi:10.1007/978-1-4615-7067-7_1. ISBN 978-1-4615-7067-7.
  5. ^ Kenner, Rex D.; Ogryzlo, Elmer A. (1985). "Chemiluminescence in Gas Phase Reactions; 4. NF(a1Δ) (870, 875 nm) and (b1Σ+) (525–530 nm)". In Burr, John G. (ed.). Chemi- and Bioluminescence. Chemical and Biochemical Analysis. Vol. 16. Dekker. pp. 84–87. ISBN 0-8247-7277-6.
This page was last edited on 9 April 2024, at 03:01
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.