To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Newton–Cartan theory

From Wikipedia, the free encyclopedia

Newton–Cartan theory (or geometrized Newtonian gravitation) is a geometrical re-formulation, as well as a generalization, of Newtonian gravity first introduced by Élie Cartan[1][2] and Kurt Friedrichs[3] and later developed by Dautcourt,[4] Dixon,[5] Dombrowski and Horneffer, Ehlers, Havas,[6] Künzle,[7] Lottermoser, Trautman,[8] and others. In this re-formulation, the structural similarities between Newton's theory and Albert Einstein's general theory of relativity are readily seen, and it has been used by Cartan and Friedrichs to give a rigorous formulation of the way in which Newtonian gravity can be seen as a specific limit of general relativity, and by Jürgen Ehlers to extend this correspondence to specific solutions of general relativity.

YouTube Encyclopedic

  • 1/5
    Views:
    39 812
    611
    1 602
    520
    4 396
  • Relativity 107d: General Relativity Basics - Curved Spacetime for Newtonian Gravity (Newton Cartan)
  • Newton–Cartan theory
  • Introduction to Newton-Cartan Gravity
  • Nic Teh (Notre Dame): Newton-Cartan Theory & Emergent...
  • Einstein-Cartan Theory #1 - Light introduction to General Relativity

Transcription

Classical spacetimes

In Newton–Cartan theory, one starts with a smooth four-dimensional manifold and defines two (degenerate) metrics. A temporal metric with signature , used to assign temporal lengths to vectors on and a spatial metric with signature . One also requires that these two metrics satisfy a transversality (or "orthogonality") condition, . Thus, one defines a classical spacetime as an ordered quadruple , where and are as described, is a metrics-compatible covariant derivative operator; and the metrics satisfy the orthogonality condition. One might say that a classical spacetime is the analog of a relativistic spacetime , where is a smooth Lorentzian metric on the manifold .

Geometric formulation of Poisson's equation

In Newton's theory of gravitation, Poisson's equation reads

where is the gravitational potential, is the gravitational constant and is the mass density. The weak equivalence principle motivates a geometric version of the equation of motion for a point particle in the potential

where is the inertial mass and the gravitational mass. Since, according to the weak equivalence principle , the corresponding equation of motion

no longer contains a reference to the mass of the particle. Following the idea that the solution of the equation then is a property of the curvature of space, a connection is constructed so that the geodesic equation

represents the equation of motion of a point particle in the potential . The resulting connection is

with and (). The connection has been constructed in one inertial system but can be shown to be valid in any inertial system by showing the invariance of and under Galilei-transformations. The Riemann curvature tensor in inertial system coordinates of this connection is then given by

where the brackets mean the antisymmetric combination of the tensor . The Ricci tensor is given by

which leads to following geometric formulation of Poisson's equation

More explicitly, if the roman indices i and j range over the spatial coordinates 1, 2, 3, then the connection is given by

the Riemann curvature tensor by

and the Ricci tensor and Ricci scalar by

where all components not listed equal zero.

Note that this formulation does not require introducing the concept of a metric: the connection alone gives all the physical information.

Bargmann lift

It was shown that four-dimensional Newton–Cartan theory of gravitation can be reformulated as Kaluza–Klein reduction of five-dimensional Einstein gravity along a null-like direction.[9] This lifting is considered to be useful for non-relativistic holographic models.[10]

References

  1. ^ Cartan, Élie (1923), "Sur les variétés à connexion affine et la théorie de la relativité généralisée (Première partie)" (PDF), Annales Scientifiques de l'École Normale Supérieure, 40: 325, doi:10.24033/asens.751
  2. ^ Cartan, Élie (1924), "Sur les variétés à connexion affine, et la théorie de la relativité généralisée (Première partie) (Suite)" (PDF), Annales Scientifiques de l'École Normale Supérieure, 41: 1, doi:10.24033/asens.753
  3. ^ Friedrichs, K. O. (1927), "Eine Invariante Formulierung des Newtonschen Gravitationsgesetzes und der Grenzüberganges vom Einsteinschen zum Newtonschen Gesetz", Mathematische Annalen, 98: 566–575, doi:10.1007/bf01451608, S2CID 121571333
  4. ^ Dautcourt, G. (1964), "Die Newtonische Gravitationstheorie als strenger Grenzfall der allgemeinen Relativitätstheorie", Acta Physica Polonica, 65: 637–646
  5. ^ Dixon, W. G. (1975), "On the uniqueness of the Newtonian theory as a geometric theory of gravitation", Communications in Mathematical Physics, 45 (2): 167–182, Bibcode:1975CMaPh..45..167D, doi:10.1007/bf01629247, S2CID 120158054
  6. ^ Havas, P. (1964), "Four-dimensional formulations of Newtonian mechanics and their relation to the special and general theory of relativity", Reviews of Modern Physics, 36 (4): 938–965, Bibcode:1964RvMP...36..938H, doi:10.1103/revmodphys.36.938
  7. ^ Künzle, H. (1976), "Covariant Newtonian limts of Lorentz space-times", General Relativity and Gravitation, 7 (5): 445–457, Bibcode:1976GReGr...7..445K, doi:10.1007/bf00766139, S2CID 117098049
  8. ^ Trautman, A. (1965), Deser, Jürgen; Ford, K. W. (eds.), Foundations and current problems of general relativity, vol. 98, Englewood Cliffs, New Jersey: Prentice-Hall, pp. 1–248
  9. ^ Duval, C.; Burdet, G.; Künzle, H. P.; Perrin, M. (1985). "Bargmann structures and Newton-Cartan theory". Physical Review D. 31 (8): 1841–1853. Bibcode:1985PhRvD..31.1841D. doi:10.1103/PhysRevD.31.1841. PMID 9955910.
  10. ^ Goldberger, Walter D. (2009). "AdS/CFT duality for non-relativistic field theory". Journal of High Energy Physics. 2009 (3): 069. arXiv:0806.2867. Bibcode:2009JHEP...03..069G. doi:10.1088/1126-6708/2009/03/069. S2CID 118553009.

Bibliography

This page was last edited on 26 March 2024, at 15:58
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.