To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Neural computation

From Wikipedia, the free encyclopedia

Neural computation is the information processing performed by networks of neurons. Neural computation is affiliated with the philosophical tradition known as Computational theory of mind, also referred to as computationalism, which advances the thesis that neural computation explains cognition. The first persons to propose an account of neural activity as being computational was Warren McCullock and Walter Pitts in their seminal 1943 paper, A Logical Calculus of the Ideas Immanent in Nervous Activity.

There are three general branches of computationalism, including classicism, connectionism, and computational neuroscience. All three branches agree that cognition is computation, however, they disagree on what sorts of computations constitute cognition. The classicism tradition believes that computation in the brain is digital, analogous to digital computing. Both connectionism and computational neuroscience do not require that the computations that realize cognition are necessarily digital computations. However, the two branches greatly disagree upon which sorts of experimental data should be used to construct explanatory models of cognitive phenomena. Connectionists rely upon behavioral evidence to construct models to explain cognitive phenomena, whereas computational neuroscience leverages neuroanatomical and neurophysiological information to construct mathematical models that explain cognition.[1]

When comparing the three main traditions of the computational theory of mind, as well as the different possible forms of computation in the brain, it is helpful to define what we mean by computation in a general sense. Computation is the processing of information, otherwise known as variables or entities, according to a set of rules. A rule in this sense is simply an instruction for executing a manipulation on the current state of the variable, in order to produce a specified output. In other words, a rule dictates which output to produce given a certain input to the computing system. A computing system is a mechanism whose components must be functionally organized to process the information in accordance with the established set of rules. The types of information processed by a computing system determine which type of computations it performs. Traditionally, in cognitive science there have been two proposed types of computation related to neural activity - digital and analog, with the vast majority of theoretical work incorporating a digital understanding of cognition. Computing systems that perform digital computation are functionally organized to execute operations on strings of digits with respect to the type and location of the digit on the string. It has been argued that neural spike train signaling implements some form of digital computation, since neural spikes may be considered as discrete units or digits, like 0 or 1 - the neuron either fires an action potential or it does not. Accordingly, neural spike trains could be seen as strings of digits. Alternatively, analog computing systems perform manipulations on non-discrete, irreducibly continuous variables, that is, entities that vary continuously as a function of time. These sorts of operations are characterized by systems of differential equations.[1]

Neural computation can be studied for example by building models of neural computation.

There is a scientific journal dedicated to this subject, Neural Computation.

Artificial neural networks (ANN) is a subfield of the research area machine learning. Work on ANNs has been somewhat inspired by knowledge of neural computation.[1]

YouTube Encyclopedic

  • 1/3
    Views:
    1 506
    13 364
    2 182
  • 15: Matrix Operations - Intro to Neural Computation
  • 4: Hodgkin-Huxley Model Part 1 - Intro to Neural Computation
  • 14: Rate Models and Perceptrons - Intro to Neural Computation

Transcription

References

  1. ^ a b c Piccinini, Gualtiero; Bahar, Sonya (2013). "Neural Computation and the Computational Theory of Cognition". Cognitive Science. 37 (3): 453–488. doi:10.1111/cogs.12012. PMID 23126542.
This page was last edited on 14 April 2024, at 14:03
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.