To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Naval Observatory Vector Astrometry Subroutines

From Wikipedia, the free encyclopedia

NOVAS
Developer(s)United States Naval Observatory
Stable release
C3.1 (C version); F3.1 (Fortran version); Python Edition 3.1.1 / March 31, 2011 (C); March 31, 2011 (FORTRAN); October 13, 2015 (Python)
Written inC/Fortran/Python
PlatformCross-platform (distributed in source code form)
TypeAstrometry
Websiteaa.usno.navy.mil/software/novas/novas_info.php

The Naval Observatory Vector Astrometry Software (NOVAS) is a software library for astrometry-related numerical computations. It is developed by the Astronomical Applications Department, United States Naval Observatory. Currently, NOVAS has three different editions, for C, Fortran, and Python.

YouTube Encyclopedic

  • 1/2
    Views:
    1 151
    378
  • An Import Loop and a Fiery Reentry | Brandon Rhodes @ PyBay 2018
  • Dr. Daniel Arnold | Precise Orbit Determination for Low Earth Orbiting LEO Satellites

Transcription

Algorithms

The algorithms used by NOVAS are based on vector astrometry theories and the IAU resolutions. Instead of using trigonometric formulae from spherical astrometry, NOVAS uses the matrix and vector formulation which is more rigorous. This version implements the resolutions on astronomical reference systems and Earth rotation models passed at the IAU General Assemblies in 1997, 2000, and 2006. According to the Astronomical Applications Department, the algorithms used in NOVAS are identical to those used in the production of the US part of the Astronomical Almanac.[1]

A detailed description of the algorithms can be found here: Kaplan, et al. (1989) Astron. J. 97, 1197.[2]

Structure

The NOVAS library provides three levels of subroutines (functions): basic, utility, and supervisory.[1] Basic-level subroutines supply the values of fundamental variables, such as the nutation angles and the heliocentric positions of Solar System bodies for specific epoches. Utility-level subroutines perform transformations, such as those caused by precession, nutation and aberration. Supervisory-level subroutines serve as interfaces to the basic and utility subroutines to compute the coordinates of stars or Solar System bodies for specific dates and times.

Usage

The NOVAS library can be linked by programs that work with positions of celestial bodies. For example, "Pocket Stars", an astronomy software for Smartphone and PDA platforms, used the NOVAS as its astrometry engine.[3]

The Python edition allows calling the NOVAS functions from Python. It is mostly feature complete with respect to the C edition, with a few exceptions,[4] and shares the C edition's API. The current edition uses Python's foreign function library, ctypes.

Current status

Future versions of the Python interface will add support for passing data via NumPy types (and therefore support vectorized operations), and present a more Pythonic interface.[5]

Forks

SuperNOVAS is a fork of NOVAS C 3.1, maintained by Attila Kovács at the Center for Astrophysics | Harvard & Smithsonian since 2024. It aims to be a successor of NOVAS for C/C++, providing continued development, bug fixes, new features, improved usability, thread safety, and online documentation. The SuperNOVAS source code and releases are also available at https://github.com/Smithsonian/SuperNOVAS.

See also

References

  1. ^ a b Kaplan, George H. "NOVAS". Retrieved 2015-07-16.
  2. ^ Kaplan, George. H.; et al. (April 1989). "Mean and apparent place computations in the new IAU system. III - Apparent, topocentric, and astrometric places of planets and stars". Astron. J. 97: 1197–1210. Bibcode:1989AJ.....97.1197K. doi:10.1086/115063.
  3. ^ Jay Alan Borseth. "Pocket Stars Product Versions (PDA, SP, PC)". Nomad Electronics. Retrieved 2008-08-01.
  4. ^ Kaplan, George H. "NOVAS - Python". Retrieved 2016-01-16.
  5. ^ Kaplan, George H. "Naval Observatory Vector AStrometry Software (NOVAS) Version 3.1, Introducing a Python Edition" (PDF). Retrieved 2016-01-16.

External links

This page was last edited on 13 May 2024, at 11:08
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.