To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

In fluid dynamics, a moving shock is a shock wave that is travelling through a fluid (often gaseous) medium with a velocity relative to the velocity of the fluid already making up the medium.[1] As such, the normal shock relations require modification to calculate the properties before and after the moving shock. A knowledge of moving shocks is important for studying the phenomena surrounding detonation, among other applications.

YouTube Encyclopedic

  • 1/2
    Views:
    1 265
    751
  • Impact Gel Saddle Pads - George Strait Commercial
  • Shockwaves

Transcription

Theory

This diagram shows the gas-relative and shock-relative velocities used for the theoretical moving shock equations.

To derive the theoretical equations for a moving shock, one may start by denoting the region in front of the shock as subscript 1, with the subscript 2 defining the region behind the shock. This is shown in the figure, with the shock wave propagating to the right. The velocity of the gas is denoted by u, pressure by p, and the local speed of sound by a. The speed of the shock wave relative to the gas is W, making the total velocity equal to u1 + W.

Next, suppose a reference frame is then fixed to the shock so it appears stationary as the gas in regions 1 and 2 move with a velocity relative to it. Redefining region 1 as x and region 2 as y leads to the following shock-relative velocities:

With these shock-relative velocities, the properties of the regions before and after the shock can be defined below introducing the temperature as T, the density as ρ, and the Mach number as M:

Introducing the heat capacity ratio as γ, the speed of sound, density, and pressure ratios can be derived:

One must keep in mind that the above equations are for a shock wave moving towards the right. For a shock moving towards the left, the x and y subscripts must be switched and:

See also

References

  1. ^ Shapiro, Ascher H., Dynamics and Thermodynamics of Compressible Fluid Flow, Krieger Pub. Co; Reprint ed., with corrections (June 1983), ISBN 0-89874-566-7.

External links

This page was last edited on 5 November 2021, at 15:27
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.