To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

In mathematics, the minimum k-cut is a combinatorial optimization problem that requires finding a set of edges whose removal would partition the graph to at least k connected components. These edges are referred to as k-cut. The goal is to find the minimum-weight k-cut. This partitioning can have applications in VLSI design, data-mining, finite elements and communication in parallel computing.

YouTube Encyclopedic

  • 1/3
    Views:
    127 586
    772
    833
  • Networks - Minimum Cuts
  • Euiwoong Lee (NYU) / Faster Exact and Approximate Algorithms for k-Cut / 2018-11-13
  • Session 4A - The Karger-Stein Algorithm is Optimal for k-cut

Transcription

Formal definition

Given an undirected graph G = (V, E) with an assignment of weights to the edges w: EN and an integer partition V into k disjoint sets while minimizing

For a fixed k, the problem is polynomial time solvable in [1] However, the problem is NP-complete if k is part of the input.[2] It is also NP-complete if we specify k vertices and ask for the minimum k-cut which separates these vertices among each of the sets.[3]

Approximations

Several approximation algorithms exist with an approximation of A simple greedy algorithm that achieves this approximation factor computes a minimum cut in each of the connected components and removes the lightest one. This algorithm requires a total of n − 1 max flow computations. Another algorithm achieving the same guarantee uses the Gomory–Hu tree representation of minimum cuts. Constructing the Gomory–Hu tree requires n − 1 max flow computations, but the algorithm requires an overall O(kn) max flow computations. Yet, it is easier to analyze the approximation factor of the second algorithm.[4][5] Moreover, under the small set expansion hypothesis (a conjecture closely related to the unique games conjecture), the problem is NP-hard to approximate to within (2 − ε) factor for every constant ε > 0,[6] meaning that the aforementioned approximation algorithms are essentially tight for large k.

A variant of the problem asks for a minimum weight k-cut where the output partitions have pre-specified sizes. This problem variant is approximable to within a factor of 3 for any fixed k if one restricts the graph to a metric space, meaning a complete graph that satisfies the triangle inequality.[7] More recently, polynomial time approximation schemes (PTAS) were discovered for those problems.[8]

While the minimum k-cut problem is W[1]-hard parameterized by k,[9] a parameterized approximation scheme can be obtained for this parameter.[10]

See also

Notes

  1. ^ Goldschmidt & Hochbaum 1988.
  2. ^ Garey & Johnson 1979
  3. ^ [1], which cites [2]
  4. ^ Saran & Vazirani 1991.
  5. ^ Vazirani 2003, pp. 40–44.
  6. ^ Manurangsi 2017
  7. ^ Guttmann-Beck & Hassin 1999, pp. 198–207.
  8. ^ Fernandez de la Vega, Karpinski & Kenyon 2004
  9. ^ G. Downey, Rodney; Estivill-Castro, Vladimir; Fellows, Michael; Prieto, Elena; Rosamund, Frances A. (2003-04-01). "Cutting Up Is Hard To Do: The Parameterised Complexity of k-Cut and Related Problems". Electronic Notes in Theoretical Computer Science. CATS'03, Computing: the Australasian Theory Symposium. 78: 209–222. doi:10.1016/S1571-0661(04)81014-4. hdl:10230/36518. ISSN 1571-0661.
  10. ^ Lokshtanov, Daniel; Saurabh, Saket; Surianarayanan, Vaishali (2022-04-25). "A Parameterized Approximation Scheme for Min $k$-Cut". SIAM Journal on Computing: FOCS20–205. arXiv:2005.00134. doi:10.1137/20M1383197. ISSN 0097-5397.

References

This page was last edited on 5 January 2024, at 18:38
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.