To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Mercator series

From Wikipedia, the free encyclopedia

Polynomial approximation to logarithm with n=1, 2, 3, and 10 in the interval (0,2).

In mathematics, the Mercator series or Newton–Mercator series is the Taylor series for the natural logarithm:

In summation notation,

The series converges to the natural logarithm (shifted by 1) whenever .

History

The series was discovered independently by Johannes Hudde (1656)[1] and Isaac Newton (1665) but neither published the result. Nicholas Mercator also independently discovered it, and included values of the series for small values in his 1668 treatise Logarithmotechnia; the general series was included in John Wallis's 1668 review of the book in the Philosophical Transactions.[2]

Derivation

The series can be obtained from Taylor's theorem, by inductively computing the nth derivative of at , starting with

Alternatively, one can start with the finite geometric series ()

which gives

It follows that

and by termwise integration,

If , the remainder term tends to 0 as .

This expression may be integrated iteratively k more times to yield

where

and

are polynomials in x.[3]

Special cases

Setting in the Mercator series yields the alternating harmonic series

Complex series

The complex power series

is the Taylor series for , where log denotes the principal branch of the complex logarithm. This series converges precisely for all complex number . In fact, as seen by the ratio test, it has radius of convergence equal to 1, therefore converges absolutely on every disk B(0, r) with radius r < 1. Moreover, it converges uniformly on every nibbled disk , with δ > 0. This follows at once from the algebraic identity:

observing that the right-hand side is uniformly convergent on the whole closed unit disk.

See also

References

  1. ^ Vermij, Rienk (3 February 2012). "Bijdrage tot de bio-bibliografie van Johannes Hudde". GEWINA / TGGNWT (in Dutch). 18 (1): 25–35. ISSN 0928-303X.
  2. ^ Roy, Ranjan (2021) [1st ed. 2011]. Series and Products in the Development of Mathematics. Vol. 1 (2nd ed.). Cambridge University Press. pp. 107, 167.
  3. ^ Medina, Luis A.; Moll, Victor H.; Rowland, Eric S. (2011). "Iterated primitives of logarithmic powers". International Journal of Number Theory. 7 (3): 623–634. arXiv:0911.1325. doi:10.1142/S179304211100423X. S2CID 115164019.
This page was last edited on 2 June 2024, at 17:16
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.