To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Magnetic scalar potential

From Wikipedia, the free encyclopedia

Magnetic scalar potential, ψ, is a quantity in classical electromagnetism analogous to electric potential. It is used to specify the magnetic H-field in cases when there are no free currents, in a manner analogous to using the electric potential to determine the electric field in electrostatics. One important use of ψ is to determine the magnetic field due to permanent magnets when their magnetization is known. The potential is valid in any region with zero current density, thus if currents are confined to wires or surfaces, piecemeal solutions can be stitched together to provide a description of the magnetic field at all points in space.

YouTube Encyclopedic

  • 1/5
    Views:
    46 653
    6 747
    21 009
    620 897
    7 641
  • Scalar and Vector Magnetic Potential - Steady Magnetic Field - Electromagnetic Engineering
  • Electric and Magnetic Fields in terms of Scalar and Vector Potentials
  • The Potential to Make Electric Fields Easier to Deal With | Electromagnetism by Parth G
  • Electric Potential
  • scalar and vector potential || magnetic scalar and vector potential

Transcription

Magnetic scalar potential

Magnetic scalar potential of flat cylinder magnets encoded as color from positive (magenta) through zero (yellow) to negative (cyan).

The scalar potential is a useful quantity in describing the magnetic field, especially for permanent magnets.

Where there is no free current,

so if this holds in simply connected domain we can define a magnetic scalar potential, ψ, as[1]
The dimension of ψ in SI base units is , which can be expressed in SI units as amperes.

Using the definition of H:

it follows that

Here, ∇ ⋅ M acts as the source for magnetic field, much like ∇ ⋅ P acts as the source for electric field. So analogously to bound electric charge, the quantity

is called the bound magnetic charge density. Magnetic charges never occur isolated as magnetic monopoles, but only within dipoles and in magnets with a total magnetic charge sum of zero. The energy of a localized magnetic charge qm in a magnetic scalar potential is
and of a magnetic charge density distribution ρm in space
where µ0 is the vacuum permeability. This is analog to the energy of an electric charge q in an electric potential .

If there is free current, one may subtract the contributions of free current per Biot–Savart law from total magnetic field and solve the remainder with the scalar potential method.

See also

Notes

  1. ^ Vanderlinde 2005, pp. 194–199

References

  • Duffin, W.J. (1980). Electricity and Magnetism, Fourth Edition. McGraw-Hill. ISBN 007084111X.
This page was last edited on 1 January 2024, at 09:48
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.